DMU18

mA Input Measurement Module & LTH Discover App

Operation Guide

Preface

Product warranty

The DMU18 mA Input Measurement Module has a warranty against defects in materials and workmanship for three years from the date of shipment. During this period LTH will, at its own discretion, either repair or replace products that prove to be defective. The associated software is provided 'as is' without warranty.

Limitation of warranty

The foregoing warranty does not cover damage caused by accidental misuse, abuse, neglect, misapplication or modification.

No warranty of fitness for a particular purpose is offered. The user assumes the entire risk of using the product. Any liability of LTH is limited exclusively to the replacement of defective materials or workmanship.

Disclaimer

LTH Electronics Ltd reserves the right to make changes to this manual or the module without notice, as part of our policy of continued developments and improvements.

All care has been taken to ensure accuracy of information contained in this manual. However, we cannot accept responsibility for any errors or damages resulting from errors or inaccuracies of information herein.

Copyright and trademarks

All rights reserved. Translations, reprinting or copying by any means of this manual, complete or in part or in any different form requires our explicit approval.

DMU18 is a trademark of LTH Electronics Ltd.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by LTH Electronics Ltd is under license.

First edition: Aug 2025

LTH Electronics Ltd Chaul End Lane Luton

BedfordshireTelephone: +44 (0)1582 593693LU4 8EZEmail: sales@lth.co.ukEnglandWeb: www.lth.co.uk

Manufacturing Standards

SKC€

Radio Equipment

This product has been designed to comply with the standards and regulations set down by both the United Kingdom RED Regulations S.I. 2017 No. 1206 and the European RED 2014/53/EU using EN IEC 61326-1: 2021, ETSI EN 300 328 V2.2.2, ETSI EN 301 489-1 V2.2.3, ETSI EN 301 489-17 V3.2.4 and EN IEC 61010-1: 2010.

Restriction of Hazardous Substances

This module has been produced to comply with the standards and regulations set down by both the United Kingdom Equipment Restriction of Hazardous Substances Regulations S.I. 2012/3032 and the European Restriction of Hazardous Substances Directive 2011/65/EU using BS EN IEC 63000: 2018.

Quality

This module has been manufactured under the following quality standard:

ISO 9001:2015. Certificate No: FM 13843

Note: The standards referred to in the design and construction of LTH products are those prevailing at the time of product launch. As the standards are altered from time to time, we reserve the right to include design modifications that are deemed necessary to comply with the new or revised regulations.

Disposal

As per regulation S.I. 2012/3032 and directive 2012/19/EU, please observe the applicable local or national regulations concerning the disposal of waste electrical and electronic equipment.

Declaration of Conformity

UK Declaration of Conformity

Chaul End Lane Luton Bedfordshire LU4 8EZ United Kingdom

We, LTH Electronics Ltd

declare under our sole responsibility that the produce / products

Product identification DMU18

to which this declaration relates is/are in conformity with all essential requirements of the UK statutory requirements relating to:

Radio Equipment Directive SI 2017 No. 1206

Hamonised Standards EN IEC 61326-1:2021

ETSI EN 300 328 V2.2.2 ETSI EN 301 489-1 V2.2.3 ETSI EN 301 489-17 V3.2.4 EN IEC 61010-1 : 2010

RoHS Directive SI 2012 No. 3032

Hamonised Standards / EN 63000: 2018
Harmonisierte Normen /
Normes Harmonisées

Place and date of issue /
Ausstellungort, -datum /

Neil Adams

Managing Director

Lieu et date d'émission

EU Declaration of Conformity EU-Konformitätserklärung Déclaration UE de Conformité

Chaul End Lane Luton Bedfordshire LU4 8EZ United Kingdom

We, / Wir, die, / Nous,

LTH Electronics Ltd

declare under our sole responsibility that the produce / products erklären in alleiniger Verantwortung, dass dieses Produkt / diese Produkte, déclarons sous notre seule responsabilité que le produit / les produits,

Product identification / Produktbezeichnung / Désignation du produit DMU18

to which this declaration relates is/are in conformity with all essential requirements of the Council Directives relating to: auf welche(s) sich diese Erklärung bezieht, mit allen wesentlichen Anforderungen der folgenden Richtlinien des Rates übereinstimmen:

auquel/auxquels se réfère cette déclaration est/sont conforme(s) aux exigences essentielles de la Directives du Conseil relatives à:

Radio Equipment Directive / Funkanlagen-Richtlinie / Directive sur les Équipements Radioélectriques 2014/53/EU

Hamonised Standards / Harmonisierte Normen / Normes Harmonisées

EN IEC 61326-1: 2021 ETSI EN 300 328 V2.2.2 ETSI EN 301 489-1 V2.2.3 ETSI EN 301 489-17 V3.2.4 EN IEC 61010-1: 2010

RoHS Directive / RoHS-Richtlinie / Directive RoHS 2011/65/EU

Hamonised Standards / Harmonisierte Normen / Normes Harmonisées

EN 63000: 2018

Place and date of issue / Ausstellungort, -datum / Lieu et date d'émission Luton, 07th May 2025

Neil Adams Managing Director

Contents

LTH

Contents

Preface1
Contents5
Introduction
DMU18 Specification
Installation – Safety & EMC
Enclosure
Module Overview
Status LEDs
Supply Voltage Connections14
Current Output Connections14
Digital Output Connections15
Digital Input Connections15
Modbus Connections 16
Installation17
DMU18 mA Input Connection Details18
LTH Discover App21
Security Code Access
Main Measurements
mA Input Setup26
Set 0mA
Set 4mA
Set 20mA
Setup Custom Curve30
Calibration32
Calibration Menu32
Reminder34
mA Input Calibration36
Solution Offset Calibration
Digital Output41
mA Outputs43
MIAO AL .

Mode	43
On Error	44
Calibrate	45
Digital Input	47
Configuration	. 49
Security Code	50
MAC Address	51
Unlock	51
Module Firmware Version	51
Modbus	53
Supported Modbus Function Codes	53
Data types	53
Mode	54
Slave Address	54
Interface	54
Save, Restore & Reset	57
Errors	60
Service	65
Appendix A – Radio Declarations	67
Fault Finding	68
Guarantee and Service	69

Introduction

The DMU18 is a microprocessor-controlled mA Input measurement instrument that can be used with a variety of loop powered and self-powered current output transmitters. The module is compatible with standard 35mm top-hat DIN rail and is powered by 12-30VDC.

0/4-20mA Outputs

The module features two industry standard, isolated, 0/4-20mA current outputs that features adjustable scaling, selectable on-error states and loop fault detection. Either allows the module to transmit the primary reading or observed process temperature for remote monitoring purposes.

Modbus

Additionally, the module features an optional Modbus interface via either RTU or ASCII over RS-485, or TCP/IP over Ethernet. Using the interface, the module's measurements can be read, status checked, configurations changed, and calibrations performed.

Note, by default the Modbus functionality is locked, and requires an additional purchase to unlock. This can be done at the time of ordering the module or alternatively may be ordered after purchase by supplying LTH or your local distributor the serial number of your module along with the purchase order. In return they will supply you with an 8 digit unlock code that is unique to the module.

Digital Input & Digital Output

Also present are a single digital input and a single digital output. The digital input features a dry contact input which allows the module to be remotely set to either an offline state that forces the current outputs to a pre-defined state, or to change the whole configuration of the module by switching the setup to a preconfigured state.

The digital output consists of a volt free, single pole, single throw normally open relay, which can be configured to clean the sensor by activating a separate jet spray wash or rotary electrode cleaning system on a timed cycle with adjustable duration, interval and recovery. Alternatively, the output can be used to indicate the module alarm status.

Status LEDs

Finally, two status LEDs on the front of the module indicate the operation status of the of the module and the Bluetooth connection.

Bluetooth

To achieve this all within in a small foot print the module features no display. Instead, a separate mobile app, *LTH Discover* that can be downloaded from all major app stores, is used to connect to the module via Bluetooth and display the primary reading and temperature, show operational status and to provide an intuitive means to configure and calibrate the module.

If multiple modules are within range **LTH Discover** can display the measurement readings and operation status of all of them within the app's discovery screen.

DMU18 Specification

Measurement Input	0 to 24mA input, fully isolated from instrument supply.
Loop Modes	mA Input – Standard mA input from transmitter, 100Ω input impedance, max loop voltage 35V.
	Loop Powered – The input card will supply 24V to power the current loop.
	3 Wire – The input card can supply an alternative 24V 30mA Max output via the "24V" pin to power a 3 wire transmitter.
Input Mode	0 – 20 mA (Linear)
	4 – 20 mA (Linear) 2 Custom Curves (Non-Linear)
Management Danger	± X.XXX
Measurement Ranges	± XX.XX
	± XXX.X
	± XXXX
Custom Units	Maximum of 7 Alphanumeric Characters.
Error States	Input under 4mA (when using 4-20mA Input)
	Input over 20mA
Accuracy	±0.1% of reading.
Linearity	± 0.1% of range.
Repeatability	± 0.1% of range.
Ambient Temperature Variation	±0.01% of range / °C (typical)
Calibration Methods	Reading Offset Calibration. Automatic 2 Point 0/4mA and 20mA Calibration.
Calibration Timer	Inbuilt calibration countdown timer which will trigger an alarm when the set calibration interval has expired.
Sensor Input filter	Adjustable filter that averages the sensor input over a user selectable time (10sec – 5mins).
Off-Line Facility	The current outputs are held at a user defined level.
Digital Input	Dry contact input for remote activation of user defined operations. Can be configured to operate in either normally open or normally closed modes.
Current Outputs Specification	Two current outputs as standard, selectable 0-20mA or 4-20mA into 750 ohms max, the pair of outputs are fully isolated to 2kV from the rest of the module. Expandable to 100% of any operating range and offset anywhere in that range.
Current Outputs Adjustment	3-point 0/4-20 mA for remote monitor calibration.
Digital Output	Volt free, single pole, single throw, normally open, 24v AC/DC max, 750mA max.

Specification

Digital Output Mode	Module alarm status
	Cleaning to operate a jet spray wash or rotary electrode cleaning system on a timed cycle. Adjustable duration, interval and recovery.
Modbus	If optioned, module features Modbus communication over either RS485 or Ethernet. Allowing for remote access to readings, configuration changes and calibration of the module.
	Can be specified at time of purchase or activated later using a module specific unlock code.
RS-485 Modbus Interface	RTU and ASCII protocol, 300Bps to 38400Bps baud rate, None-Odd-Even parity bits, 1-2 stop bits.
TCP/IP Over Ethernet Interface	Manual or automatic (via DHCP server support) network configuration. Port link and activity status LEDs
Bluetooth	Integrated Bluetooth radio. 25 meters max operating range.
Mobile App	Separate LTH Discover app provides an easy to use and intuitive means of commissioning, monitoring and calibrating the module from mobile devices via the Bluetooth interface.
	Available to download from major app stores, requires iOS 13.2 and later or Android 6.0 and up.
Radio Equipment Directive	SI 2017 No. 1206 & 2014/53/EU
Power Supply	12-30V DC, 4W max.
Module Housing	PA 6.6-FR (UL 94 V0)
Ingress Protection Rating	IP20.
Ambient Operating Conditions	Temperature -20 to +55°C, Relative Humidity 5 to 95%, non-condensing.
Weight	Maximum 160 grams (module only).
Dimensions	104 x 23 x 111 mm (H, W, D) including connectors.
Mounting	Compatible with 35 x 7.5mm and 35 x 15mm top hat section DIN rail (IEC 60715)

Installation – Safety & EMC

This chapter describes how to install the module and how to connect the unit to a power source and auxiliary equipment.

Although today's electronic components are very reliable, it should be anticipated in any system design that a component could fail, and it is therefore desirable to make sure a system will **fail safe**. This could include the provision of an additional monitoring device, depending upon the particular application and any consequences of a module or sensor failure.

Wiring Installation

The specified performance of the module is entirely dependent on correct installation. For this reason, the installer should thoroughly read the following instructions before attempting to make any electrical connections to the unit.

CAUTION!: ALWAYS REMOVE THE MAIN POWER FROM THE SYSTEM <u>BEFORE</u> ATTEMPTING ANY ALTERATIONS TO THE WIRING. ENSURE THAT <u>BOTH</u> POWER INPUT LINES ARE ISOLATED. MAKE SURE THAT THE POWER CANNOT BE SWITCHED ON BY ACCIDENT WHILST THE UNIT IS BEING CONNECTED. FOR SAFETY REASONS AN EARTH CONNECTION MUST BE MADE TO THE EARTH TERMINAL OF THIS MODULE.

LOCAL WIRING AND SAFETY REGULATIONS SHOULD BE STRICTLY ADHERED TO WHEN INSTALLING THIS UNIT. SHOULD THESE REGULATIONS CONFLICT WITH THE FOLLOWING INSTRUCTIONS, CONTACT LTH ELECTRONICS OR AN AUTHORISED LOCAL DISTRIBUTOR FOR ADVICE.

To maintain the specified levels of Electro Magnetic Compatibility (EMC, susceptibility to and emission of electrical noise, transients and radio frequency signals) it is essential that the types of cables recommended within these instructions be used. If the installation instructions are followed carefully and precisely, the module will achieve and maintain the levels of EMC protection stated in the specification. Any equipment to which this unit is connected must also have the same or similar EMC control to prevent undue interference to the system.

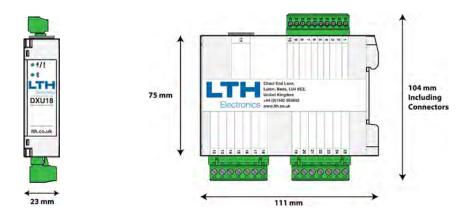
- Terminations at the connectors should have any excess wire cut back so that a minimal amount of wire is left free to radiate electrical pick-up inside or close to the module housing.
- **N.B.** The use of CE marked equipment to build a system does not necessarily mean that the completed system will comply with the European requirements for EMC.

Noise suppression

In common with other electronic circuitry, the module may be affected by high level, short duration noise spikes arising from electromagnetic interference (EMI) or radio frequency interference (RFI). To minimise the possibility of such problems occurring, the following recommendations should be followed when installing the unit in an environment where such interference could potentially occur.

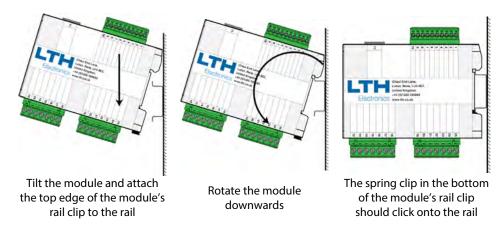
The following noise generating sources can affect the module through capacitive or inductive coupling.

- Relay coils
- Solenoids
- AC power wires, particularly at or above 100V AC
- Current carrying cables
- Thyristor field exciters
- Radio frequency transmissions
- Contactors
- Motor starters
- Business and industrial machines
- Power tools
- High intensity discharge lights
- Silicon control rectifiers that are phase angle fired


The module is designed with a high degree of noise rejection built in to minimise the potential for interference from these sources, but it is recommended that you apply the following wiring practices as an added precaution. Cables transmitting low level signals should not be routed near contactors, motors, generators, radio transmitters, or wires carrying large currents.

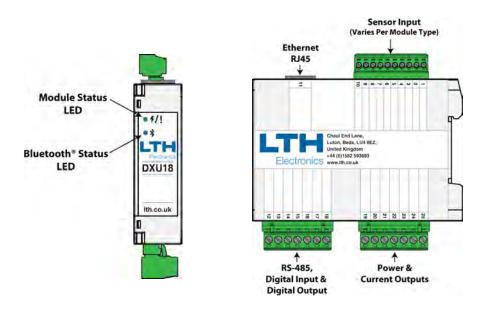
If noise sources are so severe that the module's operation is impaired, or even halted, the following external modifications should be made, as appropriate:

- Fit arc suppressors across active relay or contactor contacts in the vicinity.
- Run signal cables inside steel tubing as much as is practical.
- Use the internal relays to switch external slave relays or contactors when switching heavy or reactive loads.
- Fit an in-line mains filter close to the power terminals of the module.


Enclosure

DMU18 Overall Dimensions

The enclosure is designed to attached to standard DIN EN 60715 / TH 35mm DIN-rail.


It should be attached to the rail by following the below guide.

To remove the module from the rail, insert a slotted screwdriver into the module's rear rail clip and pull the clip downwards to disengage the clip from the rail, then follow the above but in reverse.

Module Overview

DMU18 Overview

Status LEDs

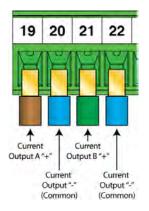
*/! Module Status LED							
	Off	Module Unpowered					
	Constant Red	Module Initialising					
305	Flashing Green	Module Running					
=0 =	Flashing Red	Module Error					

0	Off	Module Unpowered				
305	Flashing Blue	Bluetooth Unconnected				
	Constant Blue	Bluetooth Connected				

DMU18 LEDs

Supply Voltage Connections

Refer to the label adjacent to the power supply terminals for the input voltage limits. Exceeding these limits may damage the module.

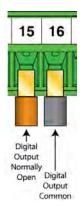


12-30V DC
Power Connections

The incoming Earth connection must be connected to the Earth terminal.

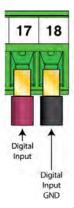
Current Output Connections

The DMU18 is supplied as standard with two current outputs, either of which can terminate into a load resistance not exceeding 750Ω and are both galvanically isolated from the rest of the module. For best noise immunity use a screened twisted pair cable, with the screen connected to Earth at one end. Use a sufficiently large cable to avoid a high resistance in the overall current loop.


Current Outputs Connection Detail

Digital Output Connections

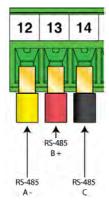
The DMU18 is supplied with a single volt free, single pole, single throw, normally open relay.


Maximum switching voltage of **24v AC/DC**, maximum load **750mA**. To switch a higher voltage or load will require a slave relay.

Digital Output Connection Details

Digital Input Connections

The DMU18 features a single dry contact digital input, which can be used to initiate a user configurable module operation by use of a volt free link, switch or relay. The module can be configured to initiate the appropriate action when the contact either closes or opens.



Digital Input Connection Details

Modbus Connections

The DMU18 features optional Modbus communications over either RS485 or Ethernet. Allowing for remote access to readings, configuration changes and calibration of the module. Note, the module can only be set to use either the RS485 interface or the Ethernet interface, they cannot both be used at the same time.

Modbus RS485 Connection Details

Note, the module does not feature an internal RS485 120 Ω terminating resistor.

Modbus TCP/IP Ethernet RJ45
Connection

Ethernet connection uses standard RJ45 connector and termination, remove connector dust cap before use. Integrated ethernet status LEDs – Green – Good link, Yellow – Activity on link.

Installation

The DMU18 mA Input Module allows the user to read the current output of a variety of loop powered and self-powered transmitters.

Self-Powered Transmitters

For self-powered transmitters the current input of the DMU18 is isolated from the module's power supply thus allowing the input to be connected in series with other devices on the loop if the loop is fed from a single ended transmitter.

Loop Powered Transmitters

For loop powered transmitters the following information may need to be considered:

Loop Voltage Drops

One of current input measurement most important specification is the total resistance or burden it presents to the connected transmitter's output driver. Most transmitters' data sheets specify the maximum loop resistance the transmitter can drive while still providing a full scale 20mA output (the worst-case level with regards to burden).

Therefore, knowing the input impedance of the DMU18's mA Input and assuming the maximum current developed in the loop will be 20mA. By using ohms law the maximum voltage drop of the current input is as follows:

Current Input Maximum Voltage Drop = $100\Omega \times 0.020A = 2 \text{ Volts}$

Transmitter Ratings

The maximum power dissipation of the transmitter can be calculated by combining all the voltage drops in the loop with the minimum operating voltage of the transmitter, take this number away from the current loop operating voltage and then multiply it by the maximum loop current. If the power dissipation is too high, then the user will need to externally power the current loop with a lower voltage.

Wiring Resistance

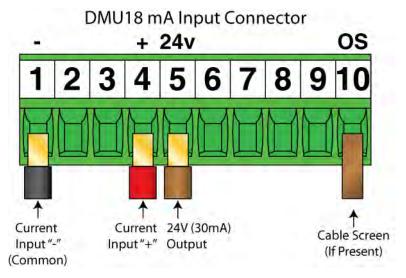
In addition to any voltage drop caused by the transmitter and the current input circuit the user will also have to consider any voltage losses caused by the wiring resistance. This voltage loss can be calculated by multiplying the combined resistance to and from the transmitter by the maximum current flowing through the wire. This figure along with the voltage dropped by the transmitter and current input circuit will define the minimum operating voltage of the loop.

$$V_{min} = V_{Tmin} + V_{CIPmax} + (0.02 \times R_{Wiring})$$

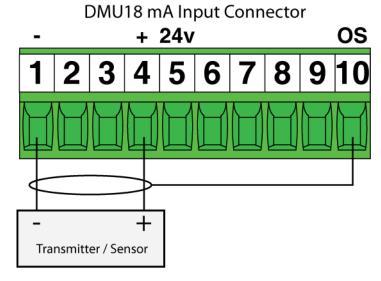
Where: V_{min} = Loop minimum supply voltage

V_{Tmin} = Transmitter minimum operating voltage

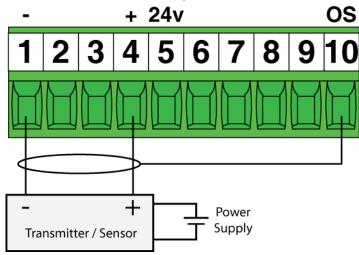
V_{CIPmax} = Current Input Maximum Voltage Drop


 R_{Wiring} = Wiring resistance = 2 x Distance x Cable Resistance (typically 0.035 Ω /m)

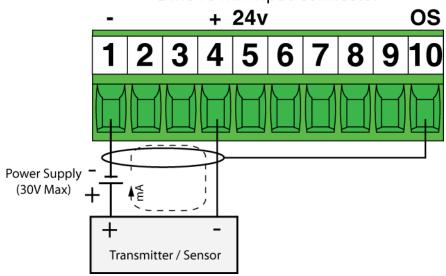
3 Wire Transmitters


For low powered 3 wire transmitters the DMU18 can supply a 24V 30mA output via the 24V O/P connection, thus allowing for the removal of an additional external power supply to the transmitter.

DMU18 mA Input Connection Details


mA Input Connection Details

Internally Powered Loop Connection Details Loop set to "Module Powered"



Locally Powered Transmitter Loop Connection Details Loop set to "External Powered"

DMU18 mA Input Connector

Externally Powered Loop Connection Details Loop set to "External Powered"

3 Wire Transmitter Loop Connection Details (NB. The 24V Can Supply 30mA Max) Loop set to "External Powered"

CAUTION! BEFORE PROCEEDING, ENSURE THAT THE INSTALLATION INSTRUCTIONS HAVE BEEN FOLLOWED CORRECTLY. FAILURE TO DO SO MAY RESULT IN AN ELECTRICALLY HAZARDOUS INSTALLATION OR IRREPARABLE DAMAGE TO THE MODULE.

LTH Discover App

Complementing the DMU18 module is a separate mobile app, *LTH Discover* which can be downloaded from all major app stores.

LTH Discover App

The app can be used to connect to the module via Bluetooth and display the primary reading and temperature, show operational status and to provide an intuitive means to configure and calibrate the module.

Opening Screen

Discovery Screen

On opening the app press the Discover Module button to enter the discovery screen. The discovery screen shows all the modules within in range along with their current sensor and temperature readings, error status, the model type, and either the serial number or if set the module's label. Click on the desired module to connect.

Note, during connection the app will check if the module is running the latest firmware to ensure compatibility between the app and the module, if not the user is given the optional ability to update it.

Measurement Screen

Module Setup Screen

Once connected the app shows the Measurement screen which can be used to view the primary, temperature, and raw sensor readings; module, digital input, digital output and error statuses; and current output readings. Pressing the gear icon enters the module setup screen from which the user can configure and calibrate the module. Note, if the Modbus menu is greyed out then the interface requires unlocking on the connected module, see 51 page for more details.

Security Code Access

To protect the module setup from unauthorised or accidental tampering when using the app, a security access code system is present. This is implemented via the module's menu system which operates in two modes, "locked" and "unlocked". The locked mode allows the user to observe the module's configuration but without the ability to change it. If the user wishes to change a setting, then the "Security Code" menu will appear that will prompt them to enter the security code which will then change the module's mode to "unlocked". Once unlocked, the user can change any setting without having to re-enter the security access code whilst the app remains connected to the module, however the module will automatically lock itself if the app disconnects.

The user can change the module's access code in the security code section of the configuration menu, or alternatively they can disable the module's security system permanently by changing the access code to 0000.

The default security code is 1000

Main Measurements

In addition to using the mobile app, the module's main measurements can be accessed using the Modbus interface and the registers as listed below. See Modbus section (page 53) for further details about the using the interface.

Description	Register/s	Туре	Access	Option	Value
Module Type	2000	Int	Read	mA Input	5

Description	Register/s	Туре	Access	Option	Value
Main Reading Status	2001	Int	Read	Normal	0

Description	Register/s	Туре	Access	Format	Units
Main Reading Value	2002	Float	Read	See register 2004	See register 2025

Description	Register/s	Туре	Access	Option	Value
Main Reading Format	2004	Int	Read	±X.XXX	0
				±XX.XX	1
				±XXX.X	2
				±XXXX	3

Description	Register/s	Туре	Access	Option	Value
Secondary Reading Status	2005	Int	Read	Disabled	0
				Enabled	1

Description	Register/s	Туре	Access	Format	Units
Secondary Reading Value (Returns 0 if secondary reading is disabled)	2006	Float	Read	See register 2008	See register 2008

Description	Register/s	Туре	Access	Option	Value
Secondary Reading Format and Units (Returns 0 if secondary reading is disabled)	2008	Int	Read	XX.XX mA	0

Description	Register/s	Туре	Access	Option	Value
Current Output A Status	2013	Int	Read	Disabled	0
				Enabled – Source Sensor	1

Description	Register/s	Туре	Access	Format	Units
Current Output A Value (Returns 0 if current output A is disabled)	2014	Float	Read	00.00 to 24.00	mA

Description	Register/s	Туре	Access	Format	Units
Current Output A Percentage (Returns 0 if current output A is disabled)	2016	Int	Read	000 to 100	%

Description	Register/s	Туре	Access	Option	Value
Current Output B Status	2017	Int	Read	Disabled	0
				Enabled – Source Sensor	1

Description	Register/s	Туре	Access	Format	Units
Current Output B Value (Returns 0 if current output B is disabled)	2018	Float	Read	00.00 to 24.00	mA

Description	Register/s	Туре	Access	Format	Units
Current Output B Percentage (Returns 0 if current output B is disabled)	2020	Int	Read	000 to 100	%

Description	Register/s	Туре	Access	Option	Value
Digital Output Status	2021	Int	Read	Disabled	0
				Inactive	1
				Active	2

Description	Register/s	Туре	Access	Option	Value
Digital Input Status	2022	Int	Read	Disabled	0
				Inactive	1
				Active	2

Description	Register/s	Туре	Access	Option	Value
Module Status	2023	Int	Read	Normal	0
				Offline	1
				Cleaning	2
				Cleaning – Recovery	3
					Digital Input – Offline
				Digital Input - Interlock	5
			Digital Input – Flow Switch	6	
				Digital Input – Tank Level	7

Description	Register/s	Туре	Access	Option	Value
Module Error Status	2024	Int	Read	No Error Present	0
				Error Present	1

Description	Register/s	Туре	Access	Format	Units
Main Reading Units	2025	ASCII 4 Bytes	Read	7 Characters (2 Characters per Register) Each Register Read as (Upper Byte << 8 Lower Byte << 0) Unused characters return 0	N/A

mA Input Setup

The Channels Setup menu contains the configuration for the sensor's input.

The default security access code is 1000

Sensor

Loop

Set the loop mode to Module Powered for current loops that have no additional devices powering the loop, i.e. loop powered transmitters.

Set the loop mode to External Powered for current loops that are already powered at source or have a voltage supply as part of the loop.

Note. For Module Powered loops the input resistance is 100Ω .

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2101	Int	Read/	None	Module Powered	0	None
		Write		External Powered	1	None

Mode

The input can be configured so that the incoming current is scaled across a 4-20mA, 0-20mA or linearized across desired points entered in to one of the two available custom curves.

If 4-20mA is selected and the input current falls below 4mA, an error is generated.

If a curve is chosen and the input falls below the lowest or highest entered mA input point, an error is generated.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2102	Int	Read/	None	0-20mA	0	None
		Write		4-20mA	1	None
				Custom Curve A	2	None
				Custom Curve B	3	None

Input

Units

Enter the operating units of the scaled input (7 Characters maximum).

Register/s Type Access Condition/s	Value Limits	Units
------------------------------------	--------------	-------

2103	4 Byte ASCII	Read / Write	None	7 Characters - ASCII Codes 0x20 to 0x7E	None
				(2 Characters per Register)	
				Each Register Read as (Upper Byte << 8 Lower Byte << 0)	
				Unused characters set to 0	

Range

Select the operating range over which the input is scaled.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2107	Int		None	±X.XXX	0	None
		Write		±XX.XX	1	None
				±XXX.X	2	None
				±XXXX	3	None

Set 0mA

Enter the measurement value equivalent to a 0mA input.

Note. Only available when sensor mode is set to 0-20mA input.

Register/s	Туре	Access Condition/s		Value Limits	Units
2108	Float	Read / Write	Mode (2102) set to 0-20mA (0)	As per Range (2102)	As per Units (2103)

Set 4mA

Enter the measurement value equivalent to a 4mA input.

Note. Only available when sensor mode is set to 4-20mA input.

Register/s	Туре	Access	Condition/s	Value Limits	Units
2110	Float	Read / Write	Mode (2102) set to 4-20mA (1)	As per Range (2102)	As per Units (2103)

Set 20mA

Enter the measurement value equivalent to a 20mA input.

Note. Only available when sensor mode is set to 0-20mA or 4-20mA input.

Register/s	Туре	Access	Condition/s	Value Limits	Units
------------	------	--------	-------------	--------------	-------

2112	Float	Read/	Mode (2102) set to either 0-	As per Range (2102)	As per Units
		Write	20mA (0) or 4-20mA (1)		(2103)

Setup Custom Curve A / Setup Custom Curve B

The module provides the user with the facility to enter a custom relationship between the incoming mA measurement and the displayed value.

To use this first set the mode to either Custom Curve A or Custom Curve B. The "Setup Custom Curve X" menu will then appear.

For guidance on setting up the curve, refer to page 30.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
App Only						

Display Raw Value

When enabled will raw mA input reading will be available via register 2006 and visible on the measurement screen of the app.

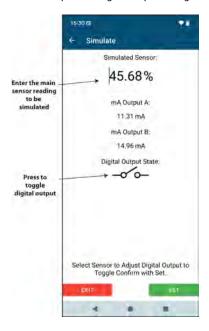
Register/s	Туре	Access	Condition/s	Option	Value	Condition/s			
2114	Int	Read/	None	No	0	None			
		Write	Write	Write	Write		mA	1	None
				%	2	Mode (2102) set to Curve A (2) or Curve B(3) and Curve mode (3120 / 3220) set to either 0-20mA/0-100% (2) or 4-20mA/0-100% (3)			

Filter

Input

When very noisy environments are encountered, this function will allow the user to filter the sensor readings by taking a running average over the time period selected (from 10 seconds to 5 minutes), alternatively to disable the filter by setting it to out.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2119	Int	Read/	None	Out	0	None
		Write		10 Seconds	1	None
				20 Seconds	2	None
				40 Seconds	3	None
				1 Minute	4	None
				3 Minute	5	None



Simulate

Sensors

Assists the user in commissioning the module by simulating the main sensor reading which in turn drive the current outputs as per their configuration. User can also toggle the status of the digital output.

Available options depend on current output and digital output configurations.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
App Only						

Setup Custom Curve

Input Mode

Define the mode the incoming current is scaled across.

Note, when using the 0-100% modes the curve input is scaled 0-100% across either 0-20mA or 4-20mA.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
Curve A:	Int	Read/	None	0-20mA	0	None
3120 Curve B:		Write		4-20mA	1	
3220				0-20mA/0-100%	2	
				4-20mA/0-100%	3	

Number of Points

Number of points – Define the number of data entry points which make up the custom curve.

Register/s	Туре	Access	Condition/s	Value Limits	Units
Curve A: 3120 Curve B: 3220	Int	Read / Write	None	2-11	None

Point Input Value

Enter the raw mA (or %) value for each point of the custom concentration curve.

Register/s	Register/s		Access	Condition/s	Value Limits & Units
Curve A	Curve B	Float	Read / Write	None	As per Input Mode
Point 1: 3130	Point 1: 3230				(3120/3220)
Point 2: 3134	Point 2: 3234				
Point 3: 3138	Point 3: 3238				
Point 4: 3142	Point 4: 3242				
Point 5: 3146	Point 5: 3246				
Point 6: 3150	Point 6: 3250				
Point 7: 3154	Point 7: 3254				
Point 8: 3158	Point 8: 3258				
Point 9: 3162	Point 9: 3262				

Point Reading Value

Enter the equivalent reading value for each point of the custom curve.

Register/s		Туре	Access	Condition/s	Value Limits & Units
Curve A	Curve B	Float	Read / Write	None	As per Range (2107)
Point 1: 3132	Point 1: 3232				and Units (2103)
Point 2: 3136	Point 2: 3236				
Point 3: 3140	Point 3: 3240				
Point 4: 3144	Point 4: 3244				
Point 5: 3148	Point 5: 3248				
Point 6: 3152	Point 6: 3252				
Point 7: 3156	Point 7: 3256				
Point 8: 3160	Point 8: 3260				
Point 9: 3164	Point 9: 3264				

Calibration

Calibration Procedures

The user is provided with two methods of calibrating the mA Input.

- Solution Calibration Selected by entering the "Solution Offset Cal" menu item in the calibration
 menu, this allows the user to adjust the scaled reading to match a known input. The amount of
 offset applied is shown in the "Solution Offset" menu item and is effective across the full scale of
 the current input.
- 2 Point Calibration Selected by entering the "mA Input Calibration" menu item in the calibration
 menu. This allows the user to calibrate a fixed mA input of 0mA, 4mA, or 20mA against a known
 current source. Available calibration values depend upon the "Input Mode" menu setting in the
 channel setup menu.

Calibration Menu

The calibration menu provides the facility to adjust the sensor inputs to the system in which it is operating.

The default security access code is 1000

Module

Mode

Selecting off-line causes any current outputs to go to the value stated in their "Offline Mode" menu, useful for when commissioning or calibrating the module.

When the unit is placed in an off-line state "off-line" will appear in the messages section on the measurement screen.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2201	Int	Read/	None	Online	0	None
		Write		Offline	1	None

Sensor

0-20mA / 4-20mA Calibration

Allows the user to calibrate the mA input to a known current source.

See mA Input Calibration on page 36 for further information.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
App Only						

Solution Offset Calibration

The solution offset calibration enables the user to adjust the sensor reading to match a known input.

See Solution Offset Calibration Solution Offset Calibration on page 39 for further information.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
App Only						

Offset Value

Displays the currently used solution offset value.

Cannot be edited.

Register/s	Туре	Access	Condition/s	Value Limits	Units
2202	Float	Read	None	As per Range (2107)	As per Units (2103)

History

Records

Shows a log of the sensor calibration. Including time and date, calibration method and results.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
App Only						

Clear

Clear the sensor calibration history.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
App Only						

Reminder

Set

By enabling the calibration reminder, the user can configure a calibration interval, which when expired will activate an alarm and message on the measurement screen.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2206	Int	Read/	None	No	0	None
	Write		Yes	1	None	

Interval

Sets the interval time for the calibration alarm.

The Reminder Date will update to show the date of the next calibration alarm.

Register/s	Туре	Access	Condition/s	Value Limits	Units
2207	Int		Reminder Set (22120 set to Yes (1)	1 to 999	Days

Date

Sets the exact date of the next calibration alarm.

The Calibration Interval will update to show the number of days to the next calibration date.

Register/s	Туре	Access	Condition/s	Value Limits	Units
2208	Int	Read / Write			Day
Register/s	Туре	Access	Condition/s	Value Limits	Units
2209	Int	Read / Write	Reminder Set (22120 set to Yes (1)	1 to 12	Month
Register/s	Туре	Access	Condition/s	Value Limits	Units
2210	Int	Read / Write	Reminder Set (22120 set to Yes (1)	(22120 set to Yes 2000 to 3000	

Defer Calibration Date

Turns off the alarm and increases the calibration interval by an extra 7 days.

Only appears once the calibration interval has expired.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2211	Int			Done	0	None
		Write	Due Set (3208 Bit 2 = 1)	Defer	1	None

Reset

Reset Sensor Calibration

Reset mA input calibration that may have been performed.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2212	Int	Read/	None	Done	0	None
		Write		Reset	1	None

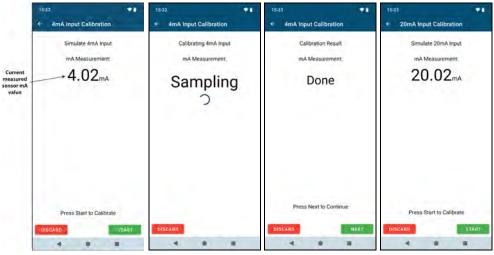
Reset Solution Calibration

Reset any sensor solution offset calibration that may have been performed.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2213	Int		None	Done	0	None
		Write		Reset	1	None

mA Input Calibration

Allows the user to calibrate a fixed mA input of 0mA, 4mA, or 20mA against a known current source. Available calibration values depend upon the Sensor Mode menu setting in the channel setup menu.

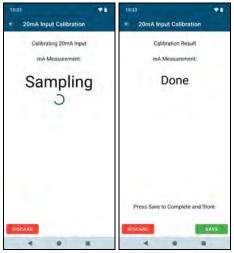

Calibration method using App

To enter the mA Input Calibration menu, click on either 0-20mA Calibrate or 4-20mA Calibrate, available option will depend upon Sensor Mode menu setting in the channel setup menu.

Once in the calibration menu, simulate the requested mA input value displayed at the top of the screen. The current mA Measurement value is also visible. Once the reading is stable press the start button and the module will begin to sample the sensor.

Once the sampling is complete the app will display done, press next to calibrate the next point or discard to abandon the calibration.

Again, set the simulated mA input as per the value displayed at the top of the screen, once the reading is stable press the start button and the module will again sample the sensor. Once that point is calibrated Done will again be displayed. Press Save to complete the store the new calibration or Discard to exit without saving the new calibration.


First Calibration Point Request Screen

Sampling Screen

First Calibration Point Result Screen

Second Calibration Point Request Screen

Sampling Screen

Second Calibration Point Result Screen

Calibration method using Modbus

To begin the calibration process set the *mA Input Calibration Status (2230)* to *Calibration Mode (1)*, the next step will depend on the Sensor Mode option in the channel menu.

If sensor mode is set to 0-20mA

Set the known current source to 0mA, then by observing mA Measurement (2231) wait for the mA input reading to stabilise. Once stable set the mA Input Calibration Status (2230) to Begin 0mA Input Calibration (2) to begin sampling the input. Once completed mA Input Calibration Status (2230) will automatically change to 0mA Calibration Process Completed (3).

If sensor mode is set to 4-20mA

Set the known current source to 4mA, then by observing mA Measurement (2231) wait for the mA input reading to stabilise. Once stable set the mA Input Calibration Status (2230) to Begin 4mA Input Calibration (4) to begin sampling the input. Once completed mA Input Calibration Status (2230) will automatically change to 4mA Calibration Process Completed (5).

Once either the 0mA or 4mA calibration has been completed, set the known current source to 20mA and again by observing mA Measurement (2231) wait for the mA input reading to stabilise. Once stable set the mA Input Calibration Status (2230) to Begin 20mA Input Calibration (6) to begin sampling the input. Once completed mA Input Calibration Status (2230) will automatically change to 20mA Calibration Process Completed (7).

If satisfied that the input was calibrated correctly set mA Input Calibration Status (2230) to Save mA Input Calibration (8). Else if not satisfied set mA Input Calibration Status (2230) to Calibration Stopped (0) to abandon the previously performed calibration.

mA Input Calibration Status

Controls the sensor mA input calibration process.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2230	Int	Read / Write	None	Calibration Stopped	0	None
				Set Module to Calibration Mode	1	None
				Begin 0mA Input Calibration	2	Mode (2102) set to 0-20mA (0)
				OmA Calibration Process Completed	3	None
				Begin 4mA Input Calibration	4	Mode (2102) set to 4-20mA (1)
				4mA Calibration Process Completed	5	None
				Begin 20mA Input Calibration	6	None
				20mA Calibration Process Completed	7	None
				Save mA Input Calibration	8	None

mA Measurement

The mA input value being measured when calibrating the mA input.

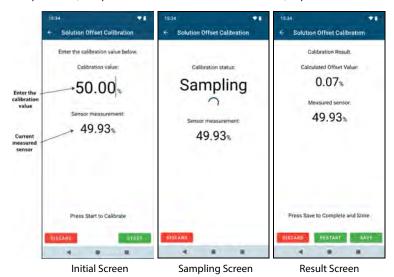
Register/s	Туре	Access	Condition/s	Value Limits	Units
2231	Float	Read	None	0.00 to 24.00	mA

Zero Calibration Value

The know turbidity value of the solution the sensor is currently in.

Register/s	Туре	Access	Condition/s	Value Limits	Units
2341	Float	Write	Sensor Type (2110) set to either TU8325 or TU8525	0.000 to 4.000	NTU
			Sensor Type (2110) set to either TU8355 or TU8555	0.0 to 100.0	FTU

Solution Offset Calibration


Allows the user to adjust the scaled reading to match a known input. The amount of offset applied is shown in the "Solution Value" menu item and is effective across the full scale of the current input.

Calibration method using App

To enter the Solution Offset Calibration menu, click on Solution Offset, Calibrate, then place the sensor in a solution with a known value. In the available Calibration Value field enter the known solution value.

Using the displayed sensor measurement wait for the reading to stabilise. Once stable press the start button and the module will begin to sample the sensor.

Once completed the app will automatically move on to the result screen to show the newly calculated solution offset value, and the measured solution value at the time of calibration. If the user is happy with the result press save, else press restart to return to the initial screen, or press discard to exit.

Calibration method using Modbus

First set the Solution Offset Calibration Status (2240) to Calibration Mode (1) and write the solution calibration value the user is simulating to Calibration Value (2241).

Now to begin sampling the solution reading set Solution Offset Calibration Status (2240) to Begin Calibration (2). Once the sampling is complete Solution Offset Calibration Status (2240) will automatically change to Calibration Process Completed (3).

The newly calculated solution offset can be read from *Calculated Offset Value (2248)* along with the *Measured Sensor Value (2255)*. If these are acceptable set *Solution Offset Calibration Status (2240)* to *Save Calibration (4)* if not set *Solution Offset Calibration Status (2240)* to either *Calibration Mode (1)* to restart the process or *Calibration Stopped (0)* to exit the calibration mode.

Note, to stop calibration at any point set Solution Offset Calibration Status (2240) to Calibration Stopped (0).

Solution Offset Calibration Status

Controls the calibration process.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2240	Int	Read / Write	None	Calibration Stopped	0	None
				Set Module to Calibration Mode	1	
				Begin Calibration	2	
				Calibration Process Completed	3	
				Save Calibration	4	

Calibration Value

The calibration value the user is simulating.

Register/s	Туре	Access	Condition/s	Value Limits & Units
2241	Float	Write	None	As per Range (2107) and Units (2103)

Calculated Offset Value

The result of the calibration, note this is not applied to the module until the calibration state is set to save.

Register/s	Туре	Access	Condition/s	Value Limits & Units
2248	Float	Read	None	As per Range (2107) and Units (2103)

Measured Sensor Value

The sensor reading at the time of calibration.

Register/s	Туре	Access	Condition/s	Value Limits & Units
2255	Float	Read	None	As per Range (2107) and Units (2103)

Digital Output

The DMU18 is equipped with a single volt free, single pole, single throw, normally open relay, which can be used to activate external sensor cleaning equipment or to indicate the module alarm status.

Operation

Mode

Select the operation mode of the Digital Output.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2401	Int		None	Disabled	0	None
		Write		Alarm	1	None
				Cleaning	2	None

Polarity

Configure whether the digital output opens or closes when active.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2402	Int		` ′	Normally Open	0	None
		Write	not set to Disabled (0)	Normally Closed	1	None

Alarm

Source

The digital output will energise when one of the following sources are active.

- Sensor Error– When a sensor related error is detected.
- Calibration When a calibration is in progress.
- Offline When the module is taken offline.
- Any Error When any error is detected.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2403	Int		Mode (2401)	Sensor Error	0	None
		Write set to (1)	set to Alarm (1)	Calibration Mode	1	None
				Offline Mode	2	None
				Any Error	3	None

Clean

The digital output can be configured to operate a jet spray wash or rotary electrode cleaning system on a timed cycle. Its purpose is to prevent accumulation of particulate matter on the active surfaces of the probe. Note when cleaning is active the input will be taken offline, this will prevent any undesired control actions resulting from spraying cleaning solution onto the probe.

Duration

Enter the duration of the cleaning operation. 00:01 to 60:00 (mm:ss)

Register/s	Туре	Access	Condition/s	Value Limits	Units
2404	Int	Read / Write	Mode (2401) set to Cleaning (2)	0 to 60	Minutes
2405				0 to 60	Seconds

Recovery

The user can introduce an additional post cleaning delay before coming back "On-line", this provides the probe a period to stabilise after the cleaning has finished. 00:00 to 60:00 (mm:ss)

Register/s	Туре	Access	Condition/s	Value Limits	Units
2406	Int	Read / Write	Mode (2401) set to Cleaning (2)	0 to 60	Minutes
2407				0 to 60	Seconds

Interval

Enter the time between cleaning operations. 00:01 to 96:00 (hh:mm)

Register/s	Туре	Access	Condition/s	Value Limits	Units
2408	Int	Read / Write	Mode (2401) set to Cleaning (2)	0 to 96	Hours
2409				0 to 60	Minutes

Manual Clean

Manually start the clean cycle.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2410	Int		,	Done	0	None
		Write	set to Cleaning (2)	Begin	1	None

mA Outputs

The DMU18 is fitted with two current outputs, either which can be used for the transmission of the primary variable or temperature. The current output menu contains all the necessary setup functions to configure the current output sources. The app will display the status of the current output on the measurement screen, where --.--mA indicates that the output is disabled.

Output

Mode

Enable the current output by selecting its output mode, either 0 – 20mA or 4 – 20mA.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
A:2501	Int		None	Disabled	0	None
B:2601		Write		0 – 20mA	1	None
				4 – 20mA	2	None

Scaling

Zero (0mA)

Enter the desired sensor value to be represented by 0mA (depends on current output mode). An inverse relationship can be achieved by setting the Zero greater than the Span.

If the sensor reading falls outside this or the span value an error will be activated.

Register/s	Туре	Access	Condition/s	Value Limits & Units	
A:2504 B:2604	Float		Output Mode (A:2501, B:2601) set to 0 – 20mA (1)	As per register 2004	As per register 2025

Zero (4mA)

Enter the desired sensor value to be represented by 4mA (depends on current output mode). An inverse relationship can be achieved by setting the Zero greater than the Span.

If the sensor reading falls outside this or the span value an error will be activated.

Register/s	Туре	Access	Condition/s	Value Limits & Units	
A:2506 B:2606	Float	Write	Output Mode (A:2501, B:2601) set to 4 – 20mA (2)	As per register 2004	As per register 2025

Span (20mA)

Enter the desired sensor value to be represented by 20mA. An inverse relationship can be achieved by setting the Span less than the Zero.

If the sensor reading falls outside this or the zero value an error will be activated.

Register/s	Туре	Access	Condition/s	Value Limits & Units	
A:2508 B:2608	Float		Output Mode (A:2501, B:2601) Not set to Disabled (0)	As per register 2004	As per register 2025

Action

On Error

The current outputs can be programmed to output 0mA, 4mA, 22mA or hold their value when an error is detected on the input source (i.e. Sensor Fault, Temperature Fault), to provide remote warning of error conditions or to ensure fail safe operation.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
A:2510	Int	Read / Write	Output Mode (A:2501, B:2601) Not set to Disabled (0)	No Action	0	None
B:2610				Drive to 0mA	1	None
				Drive to 4mA	2	None
				Drive to 22mA	3	None
				Hold Level	4	None

Offline Mode

The current outputs can be programmed to output 0mA, 4mA, 22mA or hold their value when the module is put in an offline state.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
A:2511	Int	Read/	Output Mode (A:2501, B:2601) Not set to Disabled (0)	No Action	0	None
B:2611		Write		Drive to 0mA	1	None
				Drive to 4mA	2	None
				Drive to 22mA	3	None
				Hold Level	4	None

Calibrate

Output

Permits the user to adjust the current output, to calibrate any equipment that may be being used to monitor the current output signal.

App Method

On entering the calibration function module will set the current output to a fixed value as per shown in the calibration menu. Enter the value as measured by the external meter in the displayed field then press next to proceed to the next point.

Repeat as before until both points have been calibrated. Next proceed to the check section where the current output will be set to a mid-point between to allow for calibration verification.

If the calibration is successful select Save, else select Restart to repeat the calibration or Discard to exit

Modbus Method

4-20mA Mode Example

Set Current Output Calibration Status register (A:2530, B:2630) to 2 (Start 4mA Calibration), then write the measured current output value to the Calibration 4mA Value register (A:2533, B2633).

Next set the Current Output Calibration Status register to 3 (Start 20mA Calibration), then write the measured current output value to the Calibration 20mA Value register (A:2535, B2635).

Next set the Current Output Calibration Status register to 5 (Check Calibration 12mA). If satisfied with the calibration check value set the Current Output Calibration Status register to 6, else set the register to 0.

0-20mA Mode Example

Follow the above example but use Start 0mA Calibration state (1), instead of Start 4mA Calibration state (2), Calibration 0mA Value register (A:2531, B2631) instead of Calibration 4mA Value register and Check Calibration 10mA state (4) instead of Check Calibration 12mA state (5).

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
A:2530	Int	Read/		Stop Calibration	0	None
B:2630	Write	Write		Start 0mA Calibration	1	Output Mode (A:2501, B:2601) set to 0 – 20mA (1)
				Start 4mA Calibration	2	Output Mode (A:2501, B:2601) set to 4 – 20mA (2)
				Start 20mA Calibration	3	None
				Check Calibration 10mA	4	Output Mode (A:2501, B:2601) set to 0 – 20mA (1)
				Check Calibration 12mA	5	Output Mode (A:2501, B:2601) set to 4 – 20mA (2)
				Save Calibration	6	None

Calibration	0mA Val	ue			
Register/s	Туре	Access	Condition/s	Value Limits	Units
A:2531 B:2631	Float	Write	Output Mode (A:2501, B:2601) set to 0 – 20mA (1)	0.000 to 2.000	mA
Calibration	4mA Val	ue			•
Register/s	Туре	Access	Condition/s	Value Limits	Units
A:2533 B:2633	Float	Write	Output Mode (A:2501, B:2601) set to 4 – 20mA (2)	2.000 to 6.000	mA
Calibration	20mA Va	alue		•	·
Register/s	Туре	Access	Condition/s	Value Limits	Units
A:2535 B:2635	Float	Write	Output Mode (A:2501, B:2601) Not set to Disabled (0)	18.000 to 22.000	mA

Reset

Used to reset any user calibration applied to the 0/4-20mA Current Output

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
A:2511	Int	Read/	Output Mode	Done	0	None
B:2611		Write	(A:2501, B:2601) Not set to Disabled (0)	Reset Calibration (Clears to 0 once complete)	1	None

Digital Input

The DMU18 is fitted with a single digital input. The digital input menu contains all the necessary setup functions to configure the digital input sources. This input is intended to be switched using a volt free link, switch or relay. The user can select whether closing or opening the contact initiates the configured action.

Operation

Function

The digital input can be configured to operate in the following ways:

- Offline
- Interlock
- Flow Switch
- Tank Level
- Switch Setup
- Cleaning

Offline, Interlock, Flow Switch and Tank Level – When active will take the module "offline". This causes any digital outputs to de-energise, the 0/4-20mA output to change to its set offline state and the selected function message to appear on the measurement screen.

Switch Setup – When active the module will load the configuration that has been stored in one of the two internal save stores. The original configuration is restored upon the digital input going inactive.

Cleaning – Manually move the digital output cleaning cycle to the clean phase of the cycle.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2701	Int	Read/	None	Disabled	0	None
		Write		Offline	1	None
				Interlock 2 None	None	
				Flow Switch	3	None
				Tank Level	4	None
				Switch Setup	5	Save Store A Present (3102 = 1) or Save Store B Present (3111 = 1)
				Cleaning	6	Digital Output Mode (2401) set to cleaning (2)

Store

Select which store to load when using Switch Setup.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2702	Int	Read / Write	Function (2701) set to	Store A	0	Save Store A Present (3102 = 1)
			Switch Setup (5)	Store B	1	Save Store B Present (3111 = 1)

Polarity

Configure whether the digital input activates on the closing of circuit (normal) or the opening of the circuit (reverse).

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2703	Int		Function	Normally Open	0	None
		Write	(2701) not set to Disabled (0)	Normally Closed	1	None

Configuration

The configuration menu enables the user to configure the basic operating parameters of the module.

Time & Date

Current					
The module	's current	internal ⁻	Γime and Date.		
Hour					
Register/s	Туре	Access	Condition/s	Value Limits	Units
2801	Int	Read / Write	None	0-23	Hour
Minute					
Register/s	Туре	Access	Condition/s	Value Limits	Units
2802	Int	Read / Write	None	0-59	Minute
Day					
Register/s	Туре	Access	Condition/s	Value Limits	Units
2803	Int	Read / Write	None	1-31	Day
Month				·	
Register/s	Туре	Access	Condition/s	Value Limits	Units
2804	Int	Read / Write	None	1-12	Month
Year	•	•		<u>.</u>	•
Register/s	Туре	Access	Condition/s	Value Limits	Units
2805	Int	Read / Write	None	2000-3000	Year

Update

Set the module's time as to the time on the device running the app.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
App Only						

Security Code

Change Code

Sets the security access code used by the LTH Discover app to prohibit changes to the module's configuration by unauthorised personnel.

Note, if set to 0000 the security code is permanently disabled unless changed back to another number.

Register/s	Туре	Access	Condition/s	Value Limits	
App Only					

Hardware

User Label

Set's the module's user label as displayed instead of the serial number in the Bluetooth discovery screen and measurement screen.

Note, leave blank to revert back to using the module's serial number.

Register/s	Туре	Access	Condition/s	Value Limits	Units
2807	ASCII 4 Bytes	Read / Write	None	8 Characters - ASCII Codes 0x20 to 0x7E (2 Characters per Register) Each Register Read as (Upper Byte << 8 Lower	None
				Byte << 0) Unused characters set to 0	

Model

The module's model Type

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2812	Int	Read	None	DMU18	4	None

Serial Number

The module's Serial Number

F	Register/s	Туре	Access	Condition/s	Value Limits	Units
2	2813	Long	Read	None	8 Digits	None

Configuration

MAC Address

The module's Ethernet port MAC Address

Hexadecimal format with each register holding 4 digits,

Register read as (Upper Byte << 8 | Lower Byte << 0)

Register/s	Туре	Access	Condition/s	Value Limits	Units
2815	3 Byte Hex	Read	None	XX-XX-XX-XX-XX	None

Unlock

Modbus

The DXU18 series features optional functions which when purchased will expand the module's capabilities. By default, the Modbus function of the DXU18 is locked. it can be unlocked by LTH or your local distributor at the time of order.

Alternatively, the Modbus function may be ordered after purchase by supplying LTH or your local distributor the serial number of your module along with the purchase order. In return they will supply you with an 8 digit unlock code that is unique to the module and the required function to be unlocked.

Register/s	Туре	Access	Condition/s	Value Limits	Units
App Only					

Firmware

Module Firmware Version

The module's main firmware version number.

Register/s	Туре	Access	Condition/s	Value Limits	Units
2821	Long	Read	None	Format: AA.BB.CC Read as: AA << 16 BB <<8 CC << 0	None

Measurement Firmware Version

The module's measurement section firmware version number.

Register/s	Туре	Access	Condition/s	Value Limits	Units
2823	Long	Read		Format: AA.BB.CC Read as: AA << 16 BB <<8 CC << 0	None

Bluetooth Firmware Version

The module's Bluetooth section firmware version number.

Register/s	Туре	Access	Condition/s	Value Limits	Units
2825	Long	Read	None	Format: AA.BB.CC Read as: AA << 16 BB <<8 CC << 0	None

Update Module Firmware

Update the Module's main firmware.

When selected the app gives the user the option of using either the firmware bundled with the LTH Discover app or alternatively using a different version of firmware that LTH may have provided separately by browsing to the firmware "*.bin" file location on the phone. Note, when using iOS, the file must be located in the LTH Discover folder as found in the On My iPhone folder.

Note, Updating the firmware may take up to 5 minutes to complete, during which the device uploading the firmware must remain connected to the module via Bluetooth by staying within range of the module and with the LTH Discover app open.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
App Only						

Modbus

The DMU18 features an optional Modbus interface via either RTU or ASCII over RS-485 or RCP/IP over Ethernet. Using the interface the module's measurements can be read, status checked, configurations changed, and calibrations performed.

Note, by default the Modbus functionality is locked, and requires an additional purchase to unlock. This can be done at the time of ordering the module or alternatively may be ordered after purchase by supplying LTH or your local distributor the serial number of your module along with the purchase order. In return they will supply you with an 8 digit unlock code that is unique to the module.

Supported Modbus Function Codes

Function Code	Туре	Function
3	Read Holding Register	Reads one or more registers. 1 to a maximum of 125 consecutive registers (1 register = 2 bytes) can be read with a telegram.
6	Write Single Register	Write a single register with a new value. ! Note. Registers whose address space consume more than one register i.e. Floats, cannot be set using this function code.
16	Write Multiple Registers	Writes several registers with a new value. A maximum of 120 consecutive registers can be written with a single telegram.

! Maximum number of writes - If a non-volatile parameter is modified via the Modbus this change is saved in the internal module storage. The number of writes to the storage is technically restricted to a maximum of 1 million. Attention must be paid to this limit since, if exceeded, it results in data loss and module failure. For this reason, avoid constantly writing module parameters via the Modbus.

Response Times - The time it takes the module to respond to a request telegram from the Modbus master is typically 25 to 50 milliseconds. It may take longer for a command to be executed in the module. Thus, the data is not updated until the command has been executed. Write commands especially are affected by this.

Data types - the following data types are supported by the module:

• FLOAT – Floating point numbers IEE 754, Data length 4 bytes (2 registers)

Byte 3	Byte 2	Byte 1	Byte 0
SEEEEEE	EMMMMMMM	MMMMMMM	MMMMMMM

S = Sign, E = Exponent, M = Mantissa

• INT – Integer (16 bits), Data length 2 bytes (1 register)

Byte 1	Byte 0
Most Significant Bit (MSB)	Least Significant Bit (LSB)

• LONG – Long Integer (32 bits), Data length 4 bytes (2 registers)

Byte 3	Byte 2	Byte 1	Byte 0
Most Significant Bit (MSB)	•••	•••	Least Significant Bit (LSB)

Byte Transmission Sequence – The bytes are transmitted in the following data order:

Tuno	Sequence							
Type	1 st	2 nd	3 rd	4 th				
FLOAT	Byte 3	Byte 2	Byte 1	Byte 0				
(Big Endian)	(SEEEEEEE)	(EMMMMMMM)	(MMMMMMM)	(MMMMMMM)				
INT	Byte 1 (MSB)	Byte 0 (LSB)						
LONG (Big Endian)	Byte 3 (MSB)	Byte 2	Byte 1	Byte 0 (LSB)				

Operation

Mode

Set the operation mode of the Modbus interface, note the RS485 and Ethernet interfaces cannot both be used at the same time.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2901	Int	Read / Write		Disabled	0	None
			/rite	RS485 RTU	1	None
				RS485 ASCII	2	None
					Ethernet TCP/IP	3

Slave Address

Set the slave address of the Module when using the RS485 interface.

Register/s	Туре	Access	Condition/s	Value Limits	Units
2902	Int		Mode (2901) set to either RS485 RTU (1) or RS485 ASCII (2)	1-255	None

Interface

Baud Rate

Set the RS485 interface baud rate.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2903	Int	Read/	Mode (2901) set to either RS485 RTU (1) or RS485 ASCII (2)	300	0	None
		Write		600	1	None
				1200	2	None
				2400	3	None
				4800	4	None

	9600	5	None
	19200	6	None
	31250	7	None
	38400	8	None

Parity

Set the parity format of the RS485 interface.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2904	Int		,	None	0	None
		Write		Odd	1	None
				Even	2	None

Stop Bits

Set the number of stop bits used by the RS485 interface.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2905	Int		Mode (2901)	1	0	None
		Write	set to either RS485 RTU (1) or RS485 ASCII (2)	2	1	None

Use DHCP

If available on the connected network use the DHCP server to automatically configure the TCP/IP interface. Note, if required the module's MAC address can be found in the configuration menu.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
2906	Int		(====,	No	0	None
		Write	set to Ethernet TCP/IP (3)	Yes	1	None

TCP/IP Address

If not using DHCP, specify the Module's own TCP/IP address.

If using DHCP this menu will display the DHCP assigned Gateway Address.

Register/s	Туре	Access	Condition/s	Value Limits	Units
2907 (DHCP Disabled)	Long		Mode (2901) set to Ethernet TCP/IP (3) and Use DHCP (2906) set to No (0)	Format: AAA.BBB.CCC.DDD Equal to:	None

2909	Read	Mode (2901) set to Ethernet	AAA << 0 BBB <<8 CCC	
(DHCP		TCP/IP (3) and Use DHCP (2906)	<<16 DDD<<24	1
Enabled)		set to Yes (1)	Each element 0-255	l

Gateway Address

If not using DHCP, specify the Gateway Address on the IP network the module is connected to. Note, if no Gateway is present the Address can be set to 0.0.0.0.

If using DHCP this menu will display the DHCP assigned Gateway Address.

				•			
Register/s	Туре	Access	Condition/s	Value Limits	Units		
2911 (DHCP Disabled)	Long	Read / Write	Mode (2901) set to Ethernet TCP/IP (3) and Use DHCP (2906) set to No (0)	Format: AAA.BBB.CCC.DDD Equal to:	None		
2913 (DHCP Enabled)		Read	Mode (2901) set to Ethernet TCP/IP (3) and Use DHCP (2906) set to Yes (1)	AAA << 0 BBB <<8 CCC <<16 DDD<<24 Each element 0-255			

Subnet Mask

If not using DHCP, specify the Subnet Mask of the IP network the module is connected to.

If using DHCP this menu will display the DHCP assigned Subnet Mask.

Register/s	Туре	Access	Condition/s	Value Limits	Units
2915 (DHCP Disabled)	Long	Read / Write	Mode (2901) set to Ethernet TCP/IP (3) and Use DHCP (2906) set to No (0)	Format: AAA.BBB.CCC.DDD Equal to:	None
2917 (DHCP Enabled)		Read	Mode (2901) set to Ethernet TCP/IP (3) and Use DHCP (2906) set to Yes (1)	AAA << 0 BBB <<8 CCC <<16 DDD<<24 Each element 0-255	

Port Number

Specify the TCP port the Modbus communication utilises.

Unless already in use by a different process, recommend leaving as the Modbus standard port of 502.

Register/s	Туре	Access	Condition/s	Value Limits	Units
2919	Int		Mode (2901) set to Ethernet TCP/IP (3)	1-65535	None

Save, Restore & Reset

The DMU18 features the ability to save and restore the current configuration of the module to one of two stores "A and B". In addition, using the LTH Discover app the user can save the configuration of the module to the phone which can then be used to setup additional modules or emailed to LTH or your local distributer to help with support issues.

The save and restore menu also features the ability to reset the whole module back to its factory settings.

Stores

Save

Save the configuration of the module to one of the internal module stores A or B.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
A:3101	Int	Read/	None	Done	0	None
B:3110		Write		Perform Save	1	None
				Note, returns to 0 once complete		

Save Present

Indicates if either of the internal module stores A or B has an existing save stored in them.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
A:3102	Int	Read	None	No save present	0	None
B:3111				Save Present	1	None

Store Time and Date

The time and date of the internal module store. Returns 0 if no store present.

Hour

Register/s	Туре	Access	Condition/s	Value Limits	Units
A:3103 B:3112	Int	Read	None	0-23	Hour

Minute

Register/s	Туре	Access	Condition/s	Value Limits	
A:3104 B:3113	Int	Read	None	0-59	Minute

Day									
Register/s	gister/s Type		Condition/s	Value Limits	Units				
A:3105 B:3114	Int	Read	None	1-31	Day				
Month									
Register/s	Туре	Access	Condition/s	Value Limits	Units				
A:3106 B:3115	Int	Read	None	1-12	Month				
Year	Year								
Register/s	Туре	Access	Condition/s	Value Limits	Units				
A:3107	Int	Read	None	2000-3000	Year				

Restore

B:3116

Restore the module configuration from one of the internal module stores.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
A:3108	Int	Read	None	Done	0	None
B:3117				Perform Restore	1	None
				Note, returns to 0 once complete		

Delete

Delete the module configuration from one of the internal module stores.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
A:3109	Int	Read	None	Done	0	None
B:3118				Perform Delete	1	None
				Note, returns to 0 once complete		

Phone - Upload to Module

Upload a module configuration saved as a .json file from the phone to the module.

Note, when using iOS, the file must be located in the *LTH Discover* folder as found in the *On My iPhone* folder.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
App Only						

Phone - Download from Module

Download the module configuration as a .json file from the module to the phone.

Note, when using iOS, the downloaded file will be located in the *LTH Discover* folder as found in the *On My iPhone* folder.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
App Only						

Default

Module

Reset the module to back to its factory settings.

Register/s	Type	Access	Condition/s	Option	Value	Condition/s
3100	Int	Read/	None	Done	0	None
		Write	· [Perform Reset	1	None
				Note, returns to 0 once complete		

Errors

The DMU18 features an extensive error system that constantly monitors the condition of the base module, the sensor inputs, and the current outputs. When an error occurs, the module will indicate via the status LED on the enclosure front. Additionally, if configured the current outputs will change to their error state, and the digital output will energise.

When using the LTH Discover app, a full break down of currently active errors can be seen in the Error menu which is accessible via the main menu or by clicking on the error icon, if present, in the top left of the measurement screen. Whilst in the error menu, clicking on any of the active errors brings up a detailed description of the error and suggested remedies for the issue.

Additional guidance to fixing faults can be found in the Fault Finding section from page 68.

Module Errors

E01: Read/Write Error

Try switching the module off and then on again. If the message persists, consult with your supplier, as this module may require to be returned for repair.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
3200 Bit 1	Int	Read	None	Error Not Present	0	None
				Error Present	1	None

E02: Data Error

The module configuration has for some reason become corrupted. Try switching the module off and then on again. If the message persists use the Default Module function in the Save/Restore menu or consult with your supplier, as this module may require to be returned for repair.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
3200 Bit 2	Int	Read	None	Error Not Present	0	None
				Error Present	1	None

E03: Storage Error

The save setup configuration has for some reason become corrupted. Try switching the module off and then on again. If the message persists use the delete setup function in the Save/Restore menu or consult with your supplier, as this module may require to be returned for repair.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
3200 Bit 3	Int	Read	None	Error Not Present	0	None
				Error Present	1	None

E04: Factory Error

The factory configuration has for some reason become corrupted. Try switching the module off and then on again. If the message persists, consult with your supplier, as this module may require to be returned for repair.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
3200 Bit 4	Int	Read	None	Error Not Present	0	None
				Error Present	1	None

E05: User Cal Error

The module's user calibration has for some reason become corrupted. Try switching the module off and then on again. If the message persists use the Default module function in the Save/Restore menu or consult with your supplier, as this module may require to be returned for repair.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
3200 Bit 5	Int	Read	None	Error Not Present	0	None
				Error Present	1	None

Sensor Input Errors

E23: Sensor Over Range

The sensor reading is greater than the configured operating range, check channel settings, sensor condition and connections. If the message persists, please consult with your supplier.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
3202 Bit 3	Int	Read	None	Error Not Present	0	None
				Error Present	1	None

E24: Sensor Under Range

The sensor reading is less than the configured operating range, check channel settings, sensor condition and connections. If the message persists, please consult with your supplier.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
3202 Bit 4	Int	Read	None	Error Not Present	0	None
				Error Present	1	None

E25: Input Under 4mA

The mA input is less than 4mA, check channel settings, sensor condition and connections. If the message persists, please consult with your supplier.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
3202 Bit 5	Int	Read	None	Error Not Present	0	None
				Error Present	1	None

E26: Input Over 20mA

The mA input is greater than 20mA, check channel settings, sensor condition and connections. If the message persists, please consult with your supplier.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
3202 Bit 6	Int	Read	None	Error Not Present	0	None
				Error Present	1	None

Current Output Errors

E61: Output A Hardware E71: Output B Hardware

The current output circuit has detected an error in the current output loop; this is most commonly due to either a broken loop or too large a load resistor.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
A: 3206 Bit 1	Int	Read	None	Error Not Present	0	None
B: 3207 Bit 1				Error Present	1	None

E62: Source < Output A Zero E72: Source < Output B Zero

The source's input level is less than that set for the current output zero.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
A: 3206 Bit 2	Int	Read	None	Error Not Present	0	None
B: 3207 Bit 2				Error Present	1	None

E63: Source > Output A Span E73: Source > Output B Span

The source's input level is greater than that set for the current output span.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
	Int	Read	None	Error Not Present	0	None
B: 3207 Bit 3				Error Present	1	None

E64: Source > Output A Zero E74: Source > Output B Zero

The source's input level is greater than that set for the current output zero.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
A: 3206 Bit 4	Int	Read	None	Error Not Present	0	None
B: 3207 Bit 4				Error Present	1	None

E65: Source < Output A Span E75: Source < Output B Span

The source's input level is less than that set for the current output span.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
A: 3206 Bit 5	Int	Read	None	Error Not Present	0	None
B: 3207 Bit 5				Error Present	1	None

Service Messages

M81: Service Due

The Planned Service interval for this module has expired. Please contact LTH Electronics at the details below:

LTH Electronics Itd

Chaul End Lane, Luton, Beds

LU4 8EZ

Tel. 0044 (0) 1582 593693, Email: sales@lth.co.uk

NB. LTH overseas users should contact their LTH distributor – See www.lth.co.uk for details.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
A: 3208 Bit 1	Int	Read	None	Message Not Present	0	None
				Message Present	1	None

M82: Calibration Due

The time since the last calibration was performed has exceeded the time set in the calibration menu.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
A: 3208 Bit 2	Int	Read	None	Message Not Present	0	None
				Message Present	1	None

Service

The DMU18 features a service reminder system that will inform the user when the module is due its service.

Reminder

Enabled

Set's whether the service reminder is enabled or not.

Requires service security code prior to use.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
App Only						

Interval

Specify the number of days between servicing.

Requires service security code prior to use.

Register/s	Туре	Type Access Condition/s		Value Limits	Units
App Only					

Date

The date of the next service reminder.

Requires service security code prior to use.

Register/s	Туре	Access Condition/s		Value Limits	Units
App Only					

Update

Set the next service date to the current date plus the number of interval days.

Requires service security code prior to use.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
App Only						

Defer

Once the service alarm has occurred, allows the user to temporarily disable the alarm for 7 days whilst they arrange for a service visit.

Register/s	Туре	Access	Condition/s	Option	Value	Condition/s
App Only						

Appendix A – Radio Declarations

United States (FCC)

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Canada (ISED)

This device complies with Industry Canada license exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Transmitter Antenna (from Section 7.1.2 RSS-Gen, Issue 3, December 2010): User manuals for transmitters shall display the following notice in a conspicuous location: Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.

Fault Finding

The DMU18 has been designed to include a wide range of self-diagnostic tests, some of which are performed at switch on, and some on a continuous basis. This guide aims to provide a route to diagnosing and correcting any faults that may occur during normal operation. The table shown in the Errors section on page 60 gives a list that the DMU18 generates, along with their probable causes. If after these checks the fault has not been cleared, contact LTH. Please have as much of the following information available as possible in any communication with LTH, to enable quick diagnosis and correction of the problem:

- Serial number of the module.
- The approximate date of purchase.
- Details of the program settings and application.
- Electrical environment and supply details.
- Circumstances under which the fault occurred.
- The nature of the fault or faults.
- Any error messages that are displayed.
- The sensor type, cable length and cable type.
- Current output configuration.
- Digital Output configuration.
- Digital Input configuration.

It is often worthwhile to check the measurement by an independent method, for example using a handheld meter.

The Module Appears Dead

Check that power is available to the unit. Using a voltmeter, set to DC, check the power supply voltage at the connector. The design of the DMU18 allows the unit to accept from 12 to 30V DC. Check that the power cable is securely and correctly attached. There are no user serviceable fuses fitted within this unit.

The Access Code Does Not Work

It is probable that the access code has either been changed or the operator does not recall the code correctly. Contact LTH or your local distributor should this problem arise.

The Input Reading Is Constantly Over-range, Under-range or Incorrect

- Ensure that the transmitter input is correctly connected (see Installation Section) and that the transmitter is not faulty or damaged.
- Check that Sensor Mode is correctly set (see page 26).
- Check that the input scaling has been configured correctly (see mA Input Setup page 27).
- Check that no error messages are being displayed.
- Check the instrument calibration using a mA simulator, Adjust the calibration if necessary (see Calibration section – page 32)
- Use another instrument to check the transmitter.

Current Output is Incorrect or Noisy

- Check that the maximum load for the current loop has not been exceeded. (750 Ω).
- Check that the terminals have been wired correctly.
- Check that the cable screen is attached to Earth at one end and that the cable does not pass too close to a power cable.
- Check that the current output has been configured properly (Page 43).

Guarantee and Service

Products manufactured by LTH Electronics Ltd are guaranteed against faulty workmanship and materials for a period of three years from the date of despatch, except for finished goods not of LTH manufacture, which are subject to a separate agreement.

All sensors made by LTH Electronics Ltd are thoroughly tested to their published specification before despatch. As LTH have no control over the conditions in which their sensors are used, no further guarantee is given, although any complaints concerning their operation will be carefully investigated.

Goods for attention under guarantee (unless otherwise agreed) must be returned to the factory carriage paid and, if accepted for free repair, will be returned to the customer's address free of charge. Arrangements can also be made for repair on site; in which case a charge may be made for the engineer's time and expenses.

If any services other than those covered by the guarantee are required, please contact LTH direct.

N.B. Overseas users should contact their LTH nominated representative. Special arrangements will be made in individual cases for goods returned from overseas.

Chaul End Lane Luton Bedfordshire LU4 8EZ United Kingdom

Telephone: +44 (0) 1582 593693

Email: sales@lth.co.uk

Web: www.lth.co.uk