<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-WARRANTY</td>
<td>3</td>
</tr>
<tr>
<td>2-PRODUCT</td>
<td>4</td>
</tr>
<tr>
<td>3-FEATURES</td>
<td>6</td>
</tr>
<tr>
<td>4-DIMENSIONS</td>
<td>7</td>
</tr>
<tr>
<td>5-PIPE SPECIFICATIONS</td>
<td>10</td>
</tr>
<tr>
<td>6-TRANSDUCERS POSITIONING</td>
<td>11</td>
</tr>
<tr>
<td>7-INSTALLATION</td>
<td>15</td>
</tr>
<tr>
<td>8-ELECTRICAL CONNECTIONS</td>
<td>24</td>
</tr>
<tr>
<td>9-CONFIGURATION</td>
<td>28</td>
</tr>
<tr>
<td>10-PROGRAMMING MENU</td>
<td>33</td>
</tr>
<tr>
<td>11-MAIN PARAMETERS DESCRIPTION</td>
<td>51</td>
</tr>
<tr>
<td>12-TROUBLESHOOTING</td>
<td>55</td>
</tr>
<tr>
<td>13-COMMUNICATION PROTOCOL</td>
<td>56</td>
</tr>
<tr>
<td>14-NOTE</td>
<td>57</td>
</tr>
<tr>
<td>15-FACTORY TEST AND QUALITY CERTIFICATE</td>
<td>60</td>
</tr>
</tbody>
</table>
1-WARRANTY

Products supplied by SGM LEKTRA are guaranteed for a period of 12 (twelve) months from delivery date according to the conditions specified in our sale conditions document.

SGM LEKTRA can choose to repair or replace the Product.

If the Product is repaired it will maintain the original term of guarantee, whereas if the Product is replaced it will have 12 (twelve) months of guarantee.

The warranty will be null if the Client modifies, repair or uses the Products for other purposes than the normal conditions foreseen by instructions or Contract.

In no circumstances shall SGM LEKTRA be liable for direct, indirect or consequential or other loss or damage whether caused by negligence on the part of the company or its employees or otherwise howsoever arising out of defective goods.
2.1 IDENTIFICATION

Each meter has an adhesive identification plate on which are the meter main data. The following picture describes the information and data on the identification plate.

1. Product code
2. Power supply
3. Serial number
2.2 WORKING PRINCIPLE

The SGM-101F is composed by a digital converter and two clamp-on or insertion type ultrasonic transducers. The instrument calculates the instantaneous flow rate value by measuring the flight time difference of the ultrasonic pulses.

- Compact system for conductive and non-conductive fluids, even with the suspended material presence (<10g/l; <Ø1mm)
- Measuring ranges from <0,2m³/h to >30000m³/h
- Applicable to various pipes materials (eg. SS316, copper, plastic, etc.), with or without an inner lining.
- Power supply 24Vac; 115Vac; 230Vac.

The meter is designed to measure the fluid velocity inside a pipe. The clamp-on transducers models allow an easy installation. The transit time flow meter uses two ultrasonic transducers that work as transmitters and receivers. They are installed externally to the pipe at a specific distance from each other. They can be installed at V mode (2 sonic section), at W mode (4 sonic section) or at Z mode (1 sonic section). The installation method choice depends on the pipe and the fluid characteristics. The SGM-101F measures the transit time via the two transducers that alternatively transmit and receive a sound pulses sequence. The difference in the measured transit time is directly related to the fluid velocity in the pipe.

\[V = \frac{D}{\sin(2\theta)} \cdot \frac{\Delta T}{T_1 \cdot T_2} \]

- \(\theta \) = sonic section angle
- \(D \) = pipe internal diameter
- \(T_1 \) = sound transit time from the upstream transducer to the transducer downstream
- \(T_2 \) = sound transit time from the downstream transducer to the transducer upstream
- \(\Delta T = T_2 - T_1 \)
Pipe dimension range
DN20 ÷ DN4000

Transmitter protection class
IP66

Transducer protection class
IP68

Display
backlighted 2x20 alphanumeric digit

Keypad
4 keys

Housing material
painted aluminium

Displayed data
instantaneous flowrate; flow totalizer

Mounting
wall

Analog Output
Sel. 4+20mA o 0+20mA

Accuracy
±1%

Repeatability
±0.2%

Linearity
±0.5%

Basic measurement period
500ms

Serial port
RS485

Communication protocol
MODBUS RTU or ASCII+ (opz.)

Data logger
on SD card (opt.) or via MODBUS

Programmable frequency output
0÷5000Hz

Relay output
n.1 for pulse totalizer or alarm

Medium speed range
±12m/s

Unit working temperature
-20÷60°C

Ambient humidity
non condensing 85% RH (40°C)

Transducer working temperature
TS-2 / TM-1 / TL-1 -30 + +90°C; TS2H / TM1H -30 + +160°C; TC-1/ TLC2 -40 + +160°C

PT100 sensors working temperature
-40°C +160°C

Transducer cable std. length
5mt

PT100 sensor cable std. length
15mt

Powers
24Vac; 115Vac; 230Vac.

Dimensions
200x120x77mm

Weight without sensors
1Kg
4.1 SGM-101F MECHANICAL DIMENSIONS

Transducer Type Features

TS-2

Dimensions

Pipe Ø range 20÷100mm (¾" ÷ 4")
Temperature -30 ÷ +90°C
Menu 23 >19. CLAMP-ON TS-2
<table>
<thead>
<tr>
<th>Transducer Type</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS2H</td>
<td>Dimensions
67mm x 28mm x 32mm
Pipe Ø range 20÷100mm (¾” ÷ 4”)
Temperature -30 ÷ +160°C
Menu 23 >19. CLAMP-ON TS-2</td>
</tr>
<tr>
<td>TM-1</td>
<td>Dimensions
89mm x 42mm x 44mm
Pipe Ø range 50÷700mm (2” ÷ 40”)
Temperature -30 ÷ +90°C
Menu 23 >16. CLAMP-ON TM-1</td>
</tr>
<tr>
<td>TM1H</td>
<td>Dimensions
89mm x 42mm x 44mm
Pipe Ø range 50÷700mm (2” ÷ 40”)
Temperature -30 ÷ +160°C
Menu 23 >16. CLAMP-ON TM-1</td>
</tr>
<tr>
<td>TL-1</td>
<td>Dimensions
123mm x 57mm x 54mm
Pipe Ø range 300÷4000mm (3” ÷ 160”)
Temperature -30 ÷ +900°C
Menu 23 >20. CLAMP-ON TL-1</td>
</tr>
<tr>
<td>Transducer Type</td>
<td>Features</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>TC-1 (standard)</td>
<td>Dimensions</td>
</tr>
<tr>
<td></td>
<td>[Image of TC-1 dimensions]</td>
</tr>
<tr>
<td>Pipe Ø range</td>
<td>80 ÷ 4000mm (3” ÷ 160”)</td>
</tr>
<tr>
<td>Temperature</td>
<td>-40 ÷ +160°C</td>
</tr>
<tr>
<td>Max pressure</td>
<td>1.6Mpa (16bar)</td>
</tr>
<tr>
<td>Menu 23</td>
<td>>17. INSERZ. TC-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TLC2 (for non-metallic pipes)</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Image of TLC2 dimensions]</td>
</tr>
<tr>
<td>Pipe Ø range</td>
<td>80 ÷ 4000mm (3” ÷ 160”)</td>
</tr>
<tr>
<td>Temperature</td>
<td>-40 ÷ +160°C</td>
</tr>
<tr>
<td>Max pressure</td>
<td>1.6Mpa (16bar)</td>
</tr>
<tr>
<td>Menu 23</td>
<td>>21. INSERZ. TLC-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PT100 (With brass plate)</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Image of PT100 dimensions]</td>
</tr>
<tr>
<td>Temperature</td>
<td>-40 ÷ +160°C</td>
</tr>
</tbody>
</table>
5-PIPE SPECIFICATIONS

5.1 OUTSIDE PIPE DIAMETER

In the event that an appropriate instrument to measure the pipe outer diameter is not available (programming in M11), proceed as follows:
- use a rope or paper tape or sheet
- wrap the pipe with rope or paper tape or sheet and mark the circumference point
- measure the length corresponding to the pipe circumference
- enter the measured value to "Pipe Outer Perimeter" menu (M10), SGM-101F will automatically calculate the correct pipe diameter value

5.2 PIPE THICKNESS

Value measured on site using an appropriate tool (caliper, ecc.), or from the technical data of the hydraulic circuit (programming in M12). In the presence of tubes without inner lining, is possible to use the SGM-100T thickness gauge.

5.3 PIPE MATERIAL

Value detectable on site, or from the technical data of the hydraulic circuit (programming in M14).

5.4 INNER LINING MATERIAL

Value detectable on site, or from the technical data of the hydraulic circuit (programming in M15).

5.5 INNER LINING THICKNESS

Value measured on site using an appropriate tool (caliper, ecc.), or from the technical data of the hydraulic circuit (programming in M16).
6.1 INSTALLATION CHECK-UP

The signal power and quality (Q) can be checked through the installation check-up and it's possible to make the comparison of the measured flight time by the measuring range depending on the pipe diameter.

6.1.1 Signal reception power - M90

The signal power, displayed to the menu M90 with UP and DN, is indicated by a three-digit number.

[00.0] means missing signal and [99.9] indicates the maximum measurable value.

Although the instrument is working properly with a signal power between 50.0 and 99.9, it is always recommended to try to get a value as high as possible using the following methods:

1) Select the most favorable installation position.
2) Clean the pipe outer surface and apply more coupling grease.
3) Move the transducers both vertically and horizontally while doing the signal reception control.

Mechanically lock the transducers when the detected power has reached its maximum value (always checking that the distance between the two transducers is equal to that indicated in the menu M25)

6.1.2 Signal quality (Q) - M90

Better the signal quality (Q value higher), better will be the ‘SNR and consequently the accuracy.

In normal operating conditions the Q value, displayed to the menu M90, is between 60 and 90.

In the case of a lower value, check:

1) Any interference with other instruments.
2) The transducers coupling with the pipe surface (clean the pipe or add more coupling grease).
3) The mounting position on the pipe.

6.1.3 Total transit time and Delta Time - M93

The numbers shown in the M93 are called total transit time and delta time.

These values are fundamental to calculate the flow rate inside the pipe.

The total transit time should remain stable or in any case subject to minimal variations.

If the delta time fluctuates above 20% means that there are problems with the transducers installation.

6.1.4 Time ratio between the Measured Total Transit Time and the Calculated Time - M91

The value should be in the range 100±3%. If the value exceeds this range check:

1) That the parameters have been entered correctly.
2) That the distance between the two transducers is the same as indicated in the menu M25.
3) That the transducers are installed in the right direction.
4) That the positioning point was chosen in an appropriate manner and that the pipe has not changed shape.
5) Inside the pipe there are no deposits.
6.2 POSITIONING TYPE SELECTING

The transducers positioning type selection, Z-Mode, or V-Mode or W-Mode, is a function of measuring pipe DN:

- DN20÷50 - recommended installation: W (small pipe)
- DN50÷250 - recommended installation: V
- DN250÷4000 - recommended installation: Z

6.3 MARKING POSITIONING

After the pipe parameters and transducers positioning type programming, the conversion unit automatically calculates the mounting axial distance between the two transducers: M25, Transducer Spacing. The M25 value is used to mark out on the pipe the exact transducers positioning.

6.4 MARKING TOOLS

To mark the transducers positioning points on the pipe surface are sufficient simple, but at the same time effective, tools:
- a paper tape with a minimum width of 50mm.
- a pencil or a thin tip pen
- a meter

6.5 MARKING METHODS

6.5.1 Z type positioning

For a correct transducers positioning, proceed as follows:

1) wrap the pipe with the paper tape making sure that the edges are perfectly overlapping
 With the pencil, draw the “C” circle on the pipe and, at the same time mark on the paper the circumference measured point.

2) Remove the paper tape, cut it at the marked point and fold in half the portion corresponding to the circumference. Then place the folded sheet on the top of the pipe.
 The vertex of the sheet (point A) is the mounting position of the first transducer.
3) Identify the point “B” positioned at 180° degrees from point “A”.

4) From point B draw the straight line “D” parallel to the pipe axis and equal to the value, showed in M25, previously calculated to identify point “E”.

5) Points “A” and “E” are the mounting positions of the transducers.
6.5.2 V and W type positioning

For a correct transducers positioning, proceed as follows:

1) Identify point “A”, which will be the mounting position of the first transducer.

2) From point “A” draw a straight line “S” parallel to the pipe axis, and equal to the value, showed in M25, previously calculated to identify point “E”.

![Diagram of V and W type positioning](image-url)
3) Point “A” and “E” are the mounting positions of the transducers.

6.6 PIPE SURFACE CLEANING

Clean the pipe surface with a sander, removing any trace of rust, paint, coating, pipe outer coating or else. The treated area must be extended, according to the transducers model, at least as shown in the following table:

<table>
<thead>
<tr>
<th></th>
<th>TS-2</th>
<th>TM-1</th>
<th>TL-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>70mm</td>
<td>90mm</td>
<td>140mm</td>
</tr>
<tr>
<td>B</td>
<td>40mm</td>
<td>55mm</td>
<td>80mm</td>
</tr>
</tbody>
</table>

6.7 CLAMP-ON TRANSDUCERS FIXING

1) On the transducer lower surface apply a thick layer of acoustic coupling grease.
2) Fix the transducer on the pipe surface at the transducer installation point, already cleaned.
3) Securely fasten the transducers on the pipe with the supplied steel hose clamps.

WARNING - do not overtighten in order to avoid damages to the transducers.
7-INSTALLATION

7.1 MEASURING POINT SELECTION

The transducers must be mounted on a pipe section which allows to respect the minimum distance between the element of resistance to flow, such as curves or derivations, and the measuring point. See the following table.

<table>
<thead>
<tr>
<th>Flow resistance element</th>
<th>Upstream side</th>
<th>Downstream side</th>
</tr>
</thead>
<tbody>
<tr>
<td>90° curves</td>
<td>15 x DN</td>
<td>5 x DN</td>
</tr>
<tr>
<td>T junction</td>
<td>40 x DN</td>
<td>5 x DN</td>
</tr>
<tr>
<td>Adaptors</td>
<td>18 x DN</td>
<td>5 x DN</td>
</tr>
<tr>
<td>Valves</td>
<td>40 x DN</td>
<td>5 x DN</td>
</tr>
<tr>
<td>Pumps</td>
<td>20 x DN</td>
<td></td>
</tr>
</tbody>
</table>
In the event that the minimum values shown in previous table 4 cannot be met, it is necessary to adopt every precautions to mitigate the flow turbulence and improve the homogeneity of the flow velocity in the pipe. One of the best devices is the transducers upstream installation of a fluid threads rectifier, which allows to have a straight section length of the pipe less than indicated.

The pipe where the transducers are placed must have the following characteristics:
- smooth surface without rust or other surface deterioration;
- circular cross section

The ideal points for the transducer positioning are:
- hydraulic circuit lowest point (a);
- vertical pipes with the upward flow (b);
- inclined pipes with the upward flow (c);
- vertical open drain pipes with a section restriction to avoid sudden pipe emptying during flow measurement (d)

In the case of a horizontal pipe, the transducers positioning should be between ± 45 ° relative to the horizontal center line of the pipe. This is to avoid that any air bubbles can interfere with the flow velocity detection.
Furthermore, in the case of buried pipe must observe the following measures:
with insertion type transducers L>540mm; with clamp-on type transducers L>400mm.
The transducers positioning points to be avoided are:
- vertical pipes with the downward flow, because they may not be completely filled with fluid.
- inclined pipes with the downward flow, because they may not be completely filled with fluid.
- the transducers must never be placed in the highest point of the concerned hydraulic circuit, because there is greater chance that in that pipeline section will create air pockets.
- vertical open drain pipes without a section restriction to avoid sudden pipe emptying during flow measurement.

7.2 POSITIONING DISTANCE

The value (calculated automatically by the system) shown in menu M25 refers to the “Lout” mounting distance between the two transducers, as shown in the following figures.
7.3 V INSTALLING
Is the installation method for pipes with diameters in the DN50÷250 range.

7.4 Z INSTALLING
Is the installation method for pipes with diameters in the DN300÷4000 range.

7.5 W INSTALLING
Is the installation method for pipes with diameters in the DN20÷50 range.
7.6 INSERTION TRANSDUCER INSTALLATION

Steps required for proper installation:
1 - with encased pipe, check that there is the minimum space required for the transducers installation.
2 - with encased pipe, check that the free section length of the pipe is the minimum required.

3 - Procuring the necessary equipment for drilling the pressure pipes.
4 - Set the pipe parameters: in the menu M23 choose the option 17 or 21 (TC-1 or TLC-2 insertion transducer);
in the menu M24 choose 1. (Z installation) and in the menu M25 check the positioning distance.
5 - Determine the best location for installation on pipe.
6 - Installing the ball valve base.
7.6.1 Base valve Fixing

1. ultrasonic transducer signal emitter.
2. ball valve base.
3. ball valve.
4. male thread for drill.
5. sealing nut.
6. head with terminals for electrical connection.
7. connection cable.

1. pipe.
2. ball valve base.
3. ball valve.
4. drill bit Ø19mm.
5. drill chuck.
6. seal gland.
7. drill rod.
8. power drill.

1. Weld or fix the valve base on the pipe.
2. Screw the ball valve and tighten to ensure the seal. The valve must be opened.
3. Insert the drill bit in the ball valve and tighten the seal gland on the male threads, so that there is no leakage. Fasten the power drill to rod.
4. Turn on the drill and drill pipe.
5. Unscrew the seal gland and slowly pull out the drill; as soon as possible, close the ball valve to avoid leakage.
 Use a meter, or a caliper to measure the A dimension.
 Slowly insert the transducer into the valve support and open the ball valve.
 Measure the distance "L" between the outer surface of the pipe and the upper part of the head of the transducer.
 L = A - pipe thickness.
 The transducer insertion will be installed properly when the C dimension will be equal to 0 (zero), i.e., when L = A - B.
To check the transducers ultrasonic signal emitting orientation, check that:

1. the outputs cables of both transducers are oriented orthogonally to the pipe axis.

2. the outputs cable on the transducers have the same direction.
3. The inclined surfaces of the ultrasonic transducer signal emitter should be directed towards each other.

4. Proceed to the electrical connection.
8-ELECTRICAL CONNECTIONS

8.1 CONNECTIONS

1) Separate the engine control cables or power cables from the SGM-101F connection cables.
2) Remove the caps from the cable glands and open the cover by unscrewing the screws.
3) Lead the cables into the transmitter through the cable glands.
4) Close the cap and tighten the cable glands.

8.2 POWER CONNECTION

8.2.1 Supply voltages in AC
8.2.2 Supply voltage in 10÷30Vdc

8.3 TRANSDUCER CONNECTION
8.4 OUTPUT SIGNALS CONNECTION

6.4.1 Analog output

8.4.2 Pulse output

SLM2XH3
Totalizer +
Flow rate
4÷20mA input

199-B1X
Pulse counter
Pulse input

Programmable
pulse width (M54)
8.4.3 MODBUS port

8.5 HEAT METER PT100 CONNECTION

<table>
<thead>
<tr>
<th>Pin</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blue</td>
</tr>
<tr>
<td>2</td>
<td>Brown</td>
</tr>
<tr>
<td>3</td>
<td>Brown</td>
</tr>
<tr>
<td>4</td>
<td>Black</td>
</tr>
</tbody>
</table>
9-CONFIGURATION

9.1 TURN ON THE DIGITAL CONVERTER

Before connection check the supply voltage.
When switched on, a program for self-diagnostic controls the hardware and the software.
In case of malfunction, an error message is displayed.
After checking, the system will display the last selected menu before turning off, for example, if the menu “02” was the last selected menu (from now on indicated with M02), the instantaneous flow rate and direct totalizer will be directly displayed.
During the sliding and/or displaying of the various windows menu, the measurement is not interrupted.
Only when the user sets the new pipe parameters (and each time the instrument is turned on), the SGM-101F initiates a check-up for the signal reception automatic optimization, that status will be displayed at the top right of the display, “R” means normal status.
In case of re-positioning of the transducers, the instrument will automatically adjust the signal reception.
All configurations set by the user are stored in memory, but it’s good to make sure that the menu M26, “Default Settings” is set to “0. Use RAM Settings”.

9.2 KEYBOARD

SGM-101F has 4 buttons:

Press (LEFT ARROW) to activate the programming or displaying menu direct selection.

Press (UP ARROW):
- select to the previous menu (during normal menu displaying).
- edit the selected digit (during menu programming or selecting).
- select the previous option (during menu programming).

Press (SCROLL):
- select the next menu (during normal menu displaying).
- select the digit to the right (during menu programming or selecting).
- select the next option (during menu programming).

Press (ENTER):
- access to the programming menu (during the programming menu displaying).
- confirms the entered or selected data (during the programming menu).

9.3 MENUS

The menus are numbered from M00 to M99 and from M+0 to M+9.
There are two ways to select a menu:
1) Direct access, press “LEFT ARROW” followed by the number of the desired menu.
 For example, to select M11 (the pipe outer diameter) press in the order:
 “LEFT ARROW” (enables the menu direct selection), “UP ARROW” (edit the selected digit),
 “SCROLL” (select the digit to the right), “UP ARROW” (edit the selected digit), “ENTER” (confirms the entered data).
2) Search using “UP ARROW” or “SCROLL”. Each time “UP ARROW” is pressed, will access to the previous menu (for example, to switch from M12 to M11), and each time “SCROLL” is pressed, will access to the next menu (for example, to switch from M11 to M12).

There are three menus types:
1) programming menu with alphanumeric or numeric settings (eg. pipe outer diameter, M11)
2) programming menu with option selection (eg. pipe material, M14)
3) displaying menu (eg. instantaneous flow rate and forward flow totalizer, M02)
<table>
<thead>
<tr>
<th>M00</th>
<th>Instantaneous flow rate and total net displaying</th>
<th>M53</th>
<th>AL5 analog input displaying</th>
</tr>
</thead>
<tbody>
<tr>
<td>M01</td>
<td>Instantaneous flow rate and velocity displaying</td>
<td>M54</td>
<td>OCT output pulse width programming</td>
</tr>
<tr>
<td>M02</td>
<td>Instantaneous flow rate and forward tot. displaying</td>
<td>M55</td>
<td>Analog output mode programming</td>
</tr>
<tr>
<td>M03</td>
<td>Instantaneous flow rate and reverse tot. displaying</td>
<td>M56</td>
<td>4mA (or 0mA) output programming</td>
</tr>
<tr>
<td>M04</td>
<td>Instantaneous flow rate with date and time displaying</td>
<td>M57</td>
<td>20mA output programming</td>
</tr>
<tr>
<td>M05</td>
<td>Heat meter totalizer displaying (for specific version only)</td>
<td>M58</td>
<td>Analog output simulation</td>
</tr>
<tr>
<td>M06</td>
<td>T1 and T2 displaying (Heat meter only)</td>
<td>M59</td>
<td>Analog output status displaying</td>
</tr>
<tr>
<td>M07</td>
<td>AL3 and AL4 analog input displaying</td>
<td>M60</td>
<td>System date and time programming</td>
</tr>
<tr>
<td>M08</td>
<td>Measurement status and error codes displaying</td>
<td>M61</td>
<td>SGM101-F info displaying</td>
</tr>
<tr>
<td>M09</td>
<td>Daily totalizer displaying</td>
<td>M62</td>
<td>Serial port configuration programming</td>
</tr>
<tr>
<td>M10</td>
<td>Pipe outer circumference programming</td>
<td>M63</td>
<td>Communication protocol programming</td>
</tr>
<tr>
<td>M11</td>
<td>Pipe outer diameter programming</td>
<td>M64</td>
<td>AL3 analog input programming</td>
</tr>
<tr>
<td>M12</td>
<td>Pipe inner diameter programming</td>
<td>M65</td>
<td>AL4 analog input programming</td>
</tr>
<tr>
<td>M13</td>
<td>Pipe material sound velocity programming (*)</td>
<td>M66</td>
<td>AL5 analog input programming</td>
</tr>
<tr>
<td>M14</td>
<td>Pipe material sound velocity programming (**)</td>
<td>M67</td>
<td>Frequency output range programming</td>
</tr>
<tr>
<td>M15</td>
<td>Pipe material sound velocity programming (***)</td>
<td>M68</td>
<td>Frequency output low flow rate programming</td>
</tr>
<tr>
<td>M16</td>
<td>Pipe inner lining material thickness programming</td>
<td>M69</td>
<td>Frequency output high flow rate programming</td>
</tr>
<tr>
<td>M17</td>
<td>Inner lining material sound velocity programming (**)</td>
<td>M70</td>
<td>Backlight interval programming</td>
</tr>
<tr>
<td>M18</td>
<td>Pipe inner lining thickness programming</td>
<td>M71</td>
<td>LCD contrast programming</td>
</tr>
<tr>
<td>M19</td>
<td>Inner ABS thickness programming</td>
<td>M72</td>
<td>Operation time displaying</td>
</tr>
<tr>
<td>M20</td>
<td>Fluid type programming</td>
<td>M73</td>
<td>#1 Q min. alarm programming</td>
</tr>
<tr>
<td>M21</td>
<td>Fluid sound velocity programming (**)</td>
<td>M74</td>
<td>#1 Q max. alarm programming</td>
</tr>
<tr>
<td>M22</td>
<td>Fluid viscosity programming (***)</td>
<td>M75</td>
<td>#2 Q min. alarm programming</td>
</tr>
<tr>
<td>M23</td>
<td>Transducers type programming</td>
<td>M76</td>
<td>#2 Q max. alarm programming</td>
</tr>
<tr>
<td>M24</td>
<td>Transducers mounting method programming</td>
<td>M77</td>
<td>Buzzer operation programming</td>
</tr>
<tr>
<td>M25</td>
<td>Transducers mounting distance displaying</td>
<td>M78</td>
<td>OCT output programming</td>
</tr>
<tr>
<td>M26</td>
<td>Data storage mode programming</td>
<td>M79</td>
<td>Relay output programming</td>
</tr>
<tr>
<td>M27</td>
<td>Default settings library</td>
<td>M80</td>
<td>Batch output programming</td>
</tr>
<tr>
<td>M28</td>
<td>HOLD mode programming</td>
<td>M81</td>
<td>Batch volume programming</td>
</tr>
<tr>
<td>M29</td>
<td>Empty pipe condition threshold programming</td>
<td>M82</td>
<td>SGM-101F unit events displaying</td>
</tr>
<tr>
<td>M30</td>
<td>Measurement units standard programming</td>
<td>M83</td>
<td>Totalizers automatic correction Enabling</td>
</tr>
<tr>
<td>M31</td>
<td>Instantaneous flow rate unit programming</td>
<td>M84</td>
<td>Heat meter unit programming</td>
</tr>
<tr>
<td>M32</td>
<td>Totalizers unit programming</td>
<td>M85</td>
<td>Temperature sensor input programming</td>
</tr>
<tr>
<td>M33</td>
<td>Totalizers multiplier programming</td>
<td>M86</td>
<td>Specific heat programming</td>
</tr>
<tr>
<td>M34</td>
<td>Net totalizer activation programming</td>
<td>M87</td>
<td>Heat meter totalizer programming</td>
</tr>
<tr>
<td>M35</td>
<td>Forward totalizer activation programming</td>
<td>M88</td>
<td>Heat meter totalizer multiplier programming</td>
</tr>
<tr>
<td>M36</td>
<td>Reverse totalizer activation programming</td>
<td>M89</td>
<td>Temperature differential displaying</td>
</tr>
<tr>
<td>M37</td>
<td>Totalizers reset</td>
<td>M90</td>
<td>Transducers signal power and quality displaying</td>
</tr>
<tr>
<td>M38</td>
<td>Partial totalizer</td>
<td>M91</td>
<td>TOM/TOS % displaying</td>
</tr>
<tr>
<td>M39</td>
<td>Language menu programming</td>
<td>M92</td>
<td>Sound velocity in the fluid displaying</td>
</tr>
<tr>
<td>M40</td>
<td>Damping programming</td>
<td>M93</td>
<td>Flight time and delta T.</td>
</tr>
<tr>
<td>M41</td>
<td>Low flow cut-off programming</td>
<td>M94</td>
<td>Reynolds number displaying</td>
</tr>
<tr>
<td>M42</td>
<td>Zero flow automatic calibration</td>
<td>M+0</td>
<td>Date/time/flow displaying when the unit was power off</td>
</tr>
<tr>
<td>M43</td>
<td>Zero flow calibration reset</td>
<td>M+1</td>
<td>Total operating time displaying</td>
</tr>
<tr>
<td>M44</td>
<td>Zero flow manual calibration</td>
<td>M+2</td>
<td>Last power off date/time displaying</td>
</tr>
<tr>
<td>M45</td>
<td>Correction factor programming</td>
<td>M+3</td>
<td>Last measured flow rate displaying</td>
</tr>
<tr>
<td>M46</td>
<td>MODBUS network address programming</td>
<td>M+4</td>
<td>SGM-101F on/off times number displaying</td>
</tr>
<tr>
<td>M47</td>
<td>Protection password programming</td>
<td>M+5</td>
<td>Calculator and converter</td>
</tr>
<tr>
<td>M48</td>
<td>Calibration data programming</td>
<td>M+6</td>
<td>Velocity threshold programming</td>
</tr>
<tr>
<td>M49</td>
<td>MODBUS serial port test</td>
<td>M+7</td>
<td>Monthly totalizer displaying</td>
</tr>
<tr>
<td>M50</td>
<td>Data logger programming</td>
<td>M+8</td>
<td>Annual totalizer displaying</td>
</tr>
<tr>
<td>M51</td>
<td>Data logger timer programming</td>
<td>M+9</td>
<td>Echo absence error total time displaying (*H)</td>
</tr>
<tr>
<td>M52</td>
<td>Data transmission programming</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) Available only with 9 option selected in M15
(**) Available only with 11 option selected in M16
(***) Available only with 8 option selected in M20
9.5 QUICK SETUP GUIDE

9.5.1 How to evaluate if the instrument is working properly.

If in the display upper right, the ‘R’ letter is displayed, the instrument is working properly.
If the ‘H’ letter is flashing, it means poor signal input (refer to diagnostics chapter).
If the ‘I’ letter is displayed, it means no signal. If the ‘J’ letter is displayed, it means that instrument hardware is not working properly (refer to troubleshooting chapter).

9.5.2 How to detect the fluid flow direction.

1) Check that the instrument is working properly.
2) If the display shows a positive value, the flow direction is from the “UP” to the “DOWN” transducer;
 If the display shows a negative value, the flow direction is from the “DOWN” to the “UP” transducer.

9.5.3 How to change the measurement units.

The default value is the Metric System:
1) Use the M30 menu to select the British system (in) for the pipe sizes, etc..
2) Use the M31 menu to select the instantaneous flow rate measurement unit.
3) Use the M32 menu to select the flow totalizer measurement unit.

9.5.4 How to enable and disable the totalizers.

Use the M34, M35 and M36 menu to enable and disable the forward (POS), reverse (NEG) or net (NET) flow totalizer.

9.5.5 How to reset the totalizers.

Use the M37 menu.

9.5.6 How to use the delay time.

The delay time acts as a filter to make stable the measure. By setting “0” in the M40 menu, there is no filter.
The maximum setting is 9990sec, that refers to a response time of 9990 seconds.
The delay time is normally used 10s.

9.5.7 How to use the low-cutoff.

The value shown in the M41 is called low-cutoff. The instantaneous flow rate measurements to below the low-cutoff value will be displayed by the instrument with ‘0’. In this way is avoided the invalid values accumulation.

9.5.8 How to calibrate the zero flow rate.

Make sure that the flow has stopped completely and enter the menu M42 for the calibration.

9.5.9 How to change the correction factor (Scale Factor).

The correction factor is the ratio between the actual flow and the value indicated by the instrument.
The value is obtained during testing at our headquarters, by comparing the master flow measurement with the SGM-101F unit flow measurement. For any changes, go to M45.

9.5.10 How to enable protection password.

The protection password prevents accidental configuration data changes.
Unlocking is possible by pressing the “ENTER” key and entering the password.
To set the password to access the M47 menu.
9.5.11 How to use the integrated data logger.

Use the menu M50 to activate the data logger and to select items.
Use the menu M51 to set the start time, interval time and the recordings number.
Use the menu M52 for sending data. The default setting is sending data via RS485.

9.5.12 How to use the frequency output.

The output frequency signal represents the instantaneous flow rate value and is used for connection with other instruments. The frequency output is fully configurable by the user.

Enter the minimum flow in the “M68” menu, the maximum flow rate in the “M69” and the two of the frequency range values in the M67”. For example, assuming that the the instantaneous flow rate varies from 0m3 to 3000m3/h, and the output signal has 1000Hz maximum frequency and 200Hz minimum frequency, as required by the instrumentation connected to the SGM-101F. The user must enter 0 in “M68”, 3000 in “M69”, 200 and 1000 in “M67”. The user must select the 24 option in the M78 menu (OCT Output Setup) to direct the output frequency to the OCT.

9.5.13 How to use the pulse output, totalizer repetition.

The totalized volume can be sent as an output pulse. The totalizer will generate one pulse per volume unit. The pulse totalizer can be generated by the OCT, relays or BUZZER hardware devices.

For example: configure the forward flow pulse output (POS), where each pulse corresponds to 0.1 cubic meters of flow, the pulse output will be configured with the OCT output so that, for every 0.1 cubic meter of volume, OCT emits a pulse.

Will need the following steps:
1) Select “Cubic Meter” in the M32 menu.
2) Select “2. X0.1” in the M33 menu.
3) Select “9. POS Int Pulse” in the M78 menu.

9.5.14 How to set the alarm signals.

There are three different types of hardware available to transmit the alarm signal: sonorous, OCT output (Open Collector) or relay output.

The sources that generate an alarm are:
1) No signal.
2) Poor signal.
3) Instrument is not in measurement mode.
4) Reverse flow.
5) Frequency output over-range.
6) Flow out of range.

In addition there are two flow range alarm: the #1 alarm and #2 alarm; the flow range can be configured by the user via the M73, M74, M75, M76.

For example, set the relay to emit an alarm signal when the flow rate is less than 300 m3/h, or is higher than 2000 m3/h. Will need the following steps:
1) Set 300 in M73 for #1 alarm (insufficient flow).
2) Set 2000 in M74 for #1 alarm (excessive flow).
3) Select option “6” (ALARM #1) in M79.
9.5.15 How to use acoustic alarms (Buzzer).
The Integrated Buzzer is user settable. Can be used as an alarm. M77 for setting.

9.5.16 How to use the OCT output (Open Collector).
The OCT output is user settable via M78.

9.5.17 How to change the internal calendar.
If it is necessary to change the calendar, use M60.

9.5.18 How to adjust the LCD contrast.
Use M71. The change will be saved in EEPROM.

9.5.19 How to set the RS485 serial interface.
Use M62 for setting.

9.5.20 How to display the partial totalizers.
Use M82 to display the partial totalizer (daily, monthly or yearly).

9.5.21 How to use the manual totalizer.
Use M38, then press “ENTER” to start and stop the totalizer.

9.5.22 How to check the ESN and other minor details.
The ESN is an 8-digit code that identifies the product, the version and the manufacture date.
The user can use the ESN also for the instrumentation management.
Can be found in M61.
Other details of the instrument are the total working time (displayed in M+1) and the turn-on time (displayed in M+4).

9.6 STORING CHANGE SETTING
To store the setting go to the M26 menu and proceed as follows:

1) Press “ENTER”.
2) Select option “1”.
3) To confirm, press “ENTER”.

N.B. Do this procedure after each parameter programming change.
10-PROGRAMMING MENU

10.0 M00 - Instantaneous flow rate and total net displaying
Displaying only. The display shows the instantaneous flow rate and net totalizer value. The “*R” symbol indicates that the transducers echo signal quality is good; The “*H” symbol indicates that the transducers echo signal quality is insufficient to ensure the correct flow measurement.

<table>
<thead>
<tr>
<th>Flow. 25.36 m³/h *R</th>
</tr>
</thead>
<tbody>
<tr>
<td>NET. 24780x1 m³</td>
</tr>
</tbody>
</table>

10.1 M01 - Instantaneous flow rate and velocity displaying
Displaying only. The display shows the instantaneous flow rate and the fluid velocity value in the pipe.

<table>
<thead>
<tr>
<th>Flow. 25.36 m³/h *R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vel. 1.6841x1 m/s</td>
</tr>
</tbody>
</table>

10.2 M02 - Instantaneous flow rate and forward tot. displaying
Displaying only. The display shows the instantaneous flow rate and forward totalizer (POS) value.

<table>
<thead>
<tr>
<th>Flow. 25.36 m³/h *R</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS. 32562x1 m³</td>
</tr>
</tbody>
</table>

10.3 M03 - Instantaneous flow rate and reverse tot. displaying
Displaying only. The display shows the instantaneous flow rate and reverse totalizer (NEG) value.

<table>
<thead>
<tr>
<th>Flow 25.36 m³/h *R</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEG. 7782x1 m³</td>
</tr>
</tbody>
</table>

10.4 M04 - Instantaneous flow rate with date and time displaying
Displaying only. The display shows the instantaneous flow rate value and the date (year-month-day) and time (hours: minutes: seconds).

<table>
<thead>
<tr>
<th>14-04-26 15:43:15 *R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow 25.36 m³/h</td>
</tr>
</tbody>
</table>

10.5 M05 - Heat meter totalizer displaying (for specific version only)
Displaying only. The display shows the energy flow and Heat meter totalizer value.

<table>
<thead>
<tr>
<th>EFR 2.2450 GJ/h *R</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.T. 12E+0 GJ</td>
</tr>
</tbody>
</table>

10.6 M06 - T1 and T2 displaying (Heat meter only)
Displaying only. The display shows the T1 and T2 inputs.

<table>
<thead>
<tr>
<th>T1= 32.812C, 112.76</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2= 32.812C, 112.76</td>
</tr>
</tbody>
</table>

10.7 M07 - AL3 and AL4 analog input displaying
NOT AVAILABLE.

<table>
<thead>
<tr>
<th>AI3= 0.0152, 0.0729</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI4= 0.0152, 0.0729</td>
</tr>
</tbody>
</table>

10.8 M08 - Measurement status and error codes displaying
Displaying only. The display shows the system codes and messages. A summary codes table is on page 55.

*H-------------------------H--
Poor Signal Detected

10.9 M09 - Daily totalizer displaying
Displaying only. The display shows the daily flow totalizer.

<table>
<thead>
<tr>
<th>Net Flow Today M09</th>
</tr>
</thead>
<tbody>
<tr>
<td>592 m³</td>
</tr>
</tbody>
</table>

10.10 M10 - Pipe outer circumference programming
The display shows the previously set value. By entering a new value, the system will automatically calculate the pipe outer diameter new value (M11).

<table>
<thead>
<tr>
<th>Pipe Outer Perimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>314.159 mm</td>
</tr>
</tbody>
</table>
10.11 M11 - Pipe outer diameter programming
The display shows the previously set value. By entering a new value, the system will automatically calculate the pipe outer circumference new value (M10).

10.12 M12 - Pipe thickness programming
The display shows the previously set value. By entering a new value, the system will automatically calculate the pipe inner diameter new value (M13).

10.13 M13 - Pipe inner diameter programming
The display shows the previously set value. By entering a new value, the system will automatically calculate the pipe thickness new value (M12).

10.14 M14 - Pipe material programming
The display shows the previous setting. The available materials are:

0. Carbon Steel
1. Stainless Steel
2. Cast Iron
3. Ductile Iron
4. Copper
5. PVC (Plastics in general)
6. Aluminium
7. Asbestos
8. Fiberglass-Epoxy
9. Other (the 9 option actives M15 for the sound speed in the pipe material)

10.15 M15 - Pipe material sound velocity programming (*)
The display shows the previously set value. (*) Available only with 9 option selected in M15.

10.16 M16 - Pipe inner lining material programming
The display shows the previous setting. The available materials are:

0. None, No Liner
1. Tar Epoxy
2. Rubber
3. Mortar
4. Polypropylene
5. Polystyrol
6. Polystyrene
7. Polyester
8. Polyethylene
9. Ebonite
10. Teflon
11. Other (the 11 option actives M17 for the sound speed in the lining material)
SGM-101F - programming menu

10.17 M17 - Inner lining material sound velocity progr. ()**

The display shows the previously set value.

(***) Available only with 11 option selected in M16.

<table>
<thead>
<tr>
<th>Liner Sound Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2505 m/s</td>
</tr>
</tbody>
</table>

10.18 M18 - Pipe inner lining thickness programming

The display shows the previously set value.

<table>
<thead>
<tr>
<th>Liner Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mm</td>
</tr>
</tbody>
</table>

10.19 M19 - Inner ABS thickness programming

The display shows the previously set value.

<table>
<thead>
<tr>
<th>Inside ABS Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

10.20 M20 - Fluid type programming

The display shows the previous setting.

The available fluids are:
- 0. Water (general)
- 1. Sea Water
- 2. Kerosene
- 3. Gasoline
- 4. Fuel Oil
- 5. Crude Oil
- 6. Propane (-45°C)
- 7. Butane (0°C)
- 8. Other Liquid (the 8 option actives M21 for the sound speed in the fluid)
- 9. Diesel Oil
- 10. Castor Oil
- 11. Peanut Oil
- 12. Gasoline #90
- 13. Gasoline #93
- 14. Alcohol
- 15. Water (125°C)

10.21 M21 - Fluid sound velocity programming (*)**

The display shows the previously set value.

(****) Available only with 8 option selected in M20.

<table>
<thead>
<tr>
<th>Fluid Sound Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2720 m/s</td>
</tr>
</tbody>
</table>

10.22 M22 - Fluid viscosity programming (*)**

The display shows the previously set value.

(****) Available only with 8 option selected in M20.

<table>
<thead>
<tr>
<th>Fluid Viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0038 cST</td>
</tr>
</tbody>
</table>
10.23 M23 - Transducers type programming
The display shows the previous setting.
The available models are (catalog models highlighted in bold):
0. Standard-M
1. Insertion Type C
2. Standard-S
3. User Type (some additional menus are activated for the non-standard transducers characteristics when 3 option is selected)
4. Standard-B
5. Insertion B(45)
6. Standard-L
7. JH-Polysonics
8. Standard-HS
9. Standard-HM
10. Standard-M1
11. Standard-S1
12. Standard-L1
13. PI-Type
14. FS410 (FUJI)
15. FS510 (FUJI)
16. Clamp-on TM-1 (see features on page 8)
17. Insertion TC-1 (see features on page 9)
18. Clamp-on TS-1
19. Clamp-on TS-2 (see features on page 7)
20. Clamp-on TL-1 (see features on page 8)
21. Insertion TLC2 (see features on page 9)
22. Clamp-on M2
23. Clamp-on L2

10.24 M24 - Transducers mounting method programming
The display shows the previous setting.
The available mounting methods are:
0. V
1. Z

10.25 M25 - Transducers mounting distance displaying
The display shows the automatically calculated transducers mounting distance.

10.26 M26 - Data storage mode programming
The display shows the previous setting.
Available settings:
0. Use RAM Settings (recommended); all the latest programming changes are automatically stored in the EEPROM
1. Solidify Setting; to store in the EEPROM the latest changes to any menu, must go back to M26 and press “ENTER”.
10.27 M27 - Default settings library

The display shows the previous setting. Here it is possible save or load the flow measurement default settings, from M10 to M24, previously stored on EEPROM, (es. pipe diameter, thickness, etc.). Outputs and other configuration parameters aren’t saved or modified.

10.27.1 Default setting loading

To load a default setting, proceed as follows: press “ENTER”.

Select the default setting to be loaded with “UP ARROW” or “SCROLL” and press “ENTER”.

Confirm the selection by pressing “ENTER”. The system automatically displays M23.

10.27.2 Storing default setting

To store a new default setting, proceed as follows: press “ENTER”.

Select with “UP ARROW” or “SCROLL” to replace the default setting and press “ENTER”.

To select the “1.” option, press “UP ARROW” or “SCROLL” and confirm by pressing “ENTER”. The system automatically displays M23.

10.28 M28 - HOLD mode programming

The display shows the previous setting. Selecting “YES”, in the case of transducer echo signal temporary loss, the SGM-101F maintains the last valid measurement. Selecting “NO”, the instantaneous flow rate measured value will go to zero.

10.29 M29 - Empty pipe condition threshold programming

The display shows the previous setting. This threshold is related to the Q value (see M90). When the Q value will be lower than the threshold value, set here, SGM-101F activates the empty pipe condition by zeroing the flow measurement. Default value: 20

10.30 M30 - Measurement units standard programming

The display shows the previous setting. Select the system for standardized units: for the mechanical dimensions in M10, M11, M12 and M25; for the velocity in M41, M92 and M+6. Available settings:

0. Metric; magnitudes expressed in “mm” or “m/s”
1. English; magnitudes expressed in “in” or “ft/s”
10.31 M31 - Instantaneous flow rate unit programming

The display shows the previous setting.
To set the instantaneous flow rate measurement unit proceed as follows:
press “ENTER”.

Press “UP ARROW” or “SCROLL” to select the volume measure unit
and press “ENTER” to confirm.
Available settings: Cubic Meter (m3); Liter (l); US Gallon (Gal);
UK Gallon (IGL); Million US Gallon; Cubic Feet (CF); US Oil Barrel (OB);
UK Oil Barrel (IB)

Press “UP ARROW” or “SCROLL” to select the time measure unit and
press “ENTER” to confirm.
Available settings: /hour (/h); /min (/m); /sec. (/s); /day (/d)
NB - On the top line displays the volume measure unit previously set

<table>
<thead>
<tr>
<th>Flow Rate Unit</th>
<th>m3/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow: Unit/Time</td>
<td></td>
</tr>
<tr>
<td>> Cubic Metric (m3)</td>
<td></td>
</tr>
<tr>
<td>Totalizers Unit</td>
<td></td>
</tr>
<tr>
<td>> Cubic Metric (m3)</td>
<td></td>
</tr>
</tbody>
</table>

10.32 M32 - Totalizers unit programming

The display shows the previous setting.
To set the Totalizers measurement unit proceed as follows:
press “ENTER”.

Press “UP ARROW” or “SCROLL” to select the volume measure unit
and press “ENTER” to confirm.
Available settings: Cubic Meter (m3); Liter (l); US Gallon (Gal);
UK Gallon (IGL); Million US Gallon; Cubic Feet (CF); US Oil Barrel (OB);
UK Oil Barrel (IB)

Totalizer Unit
> Liter (l)

10.33 M33 - Totalizers multiplier programming

The display shows the previous setting.
Default value: x1
Available settings:
 0. x0.001 (1E-3)
 1. x0.01
 2. x0.1
 3. x1
 4. x10
 5. x100
 6. x1000
 7. x10000 (1E+4)

<table>
<thead>
<tr>
<th>Totalizer Multiplier</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>x1</td>
</tr>
</tbody>
</table>

10.34 M34 - Net totalizer activation programming

The display shows the previous setting.
To activate the net totalizer, between the forward totalizer and reverse
totalizer, need to set “ON”
Available settings: ON; OFF

<table>
<thead>
<tr>
<th>NET Totalizer</th>
<th>ON</th>
</tr>
</thead>
</table>

10.35 M35 - Forward totalizer activation programming

The display shows the previous setting.
To activate the forward totalizer need to set “ON”
Available settings: ON; OFF

<table>
<thead>
<tr>
<th>POS Totalizer</th>
<th>ON</th>
</tr>
</thead>
</table>

10.36 M36 - Reverse totalizer activation programming

The display shows the previous setting.
To activate the forward totalizer need to set “ON”
Available settings: ON; OFF

| NEG Totalizer | ON |
10.37 M37 - Totalizers reset

To avoid unwanted reset, the reset confirmation shall be done in 2 distinct sub-menu. It is also possible to reset all totalizer or single totalizer. To reset, proceed as follows: press “ENTER”.

Select with “UP ARROW” or “SCROLL” “YES” and press “ENTER”. Selecting “NO” the reset procedure is canceled.
Default value: NO

Select with “UP ARROW” or “SCROLL” the required option and press “ENTER”, the confirmation message will appear after the reset.
Selecting “NONE” the reset procedure is canceled. Default value: NONE
Available settings:
None
All;
NET Totalizer
POS Totalizer
NEG Totalizer
Energy NET Total
Energy POS Total
Energy NEG Total
Master Erase
Net Flow Today
Monthly Totalizer
Yearly Totalizer

10.38 M38 - Partial totalizer

In this menu a partial totalizer with manual start and stop is available. To start the partial totalization press “ENTER”.

Pressing “ENTER” will stop the totalization.
Further pressing “ENTER” will reset and restart the partial totalizer.
Press “UP ARROW” or “SCROLL” to exit.

10.39 M39 - Language menu programming

The display shows the previous setting.
Available settings:
English
Italian

10.40 M40 - Damping programming

The display shows the previous setting.
In this menu it’s possible to change the damping value, in seconds.
Range: 0÷9990 Sec

10.41 M41 - Low flow cut-off programming

The display shows the previous setting.
In this menu it’s possible to change the velocity threshold, in m/s (f/s if M30 is setted to “English”), under this threshold value the SGM-101F will show zero flow, and also the totalizer increase will be stopped.
10.42 M42 - Zero flow automatic calibration

In this menu it's possible to do the zero flow automatic calibration. This calibration is used to compensate the possible measurement errors at zero. Under normal conditions not need to do this calibration.

Press “ENTER” to perform the calibration.
By pressing “ENTER” during the calibration procedure is stopped.
The digit at the bottom left indicates the remaining reads number for the calibration completion.
N.B. - During calibration, the signal status must always be in “R” (see the letter in the upper right), otherwise, the calibration procedure will not be completed

WARNING - The fluid inside the pipe must be still during the automatic calibration procedure.

10.43 M43 - Zero flow calibration reset

In this menu it's possible to cancel the automatic calibration of zero flow, previously done in M42. SGM-101F will set the default value.

10.44 M44 - Zero flow manual calibration

In this menu it's possible to set an Offset value to be added or subtracted from the instantaneous flow rate.

10.45 M45 - Correction factor programming

In this menu it's possible to set the correction factor. Verify on matched ultrasonic transducers the presence of a label indicating the value to set.
Default value: 1

10.46 M46 - MODBUS network address programming

In this menu it's possible to set the UID address.
Default value: 1

10.47 M47 - Protection password programming

In this menu it’s possible to set a password to protect the system from tampering or other. To store a new password and protect the system proceed as follows: press “ENTER”.

Change the digit with “UP ARROW” and move the cursor to the right with “SCROLL”, max. value: 99999
Press “ENTER” to store the new password and protect the system by blocking the changes to the programming.

To unlock the changes to the programming, proceed as follows: press “ENTER”.

Enter the previously stored password, modifying the digit with “UP ARROW” and moving the cursor to the right with “SCROLL”. Press “ENTER” to confirm and unlock the programming changes.
10.48 M48 - Calibration data programming
Only for headquarters use.

10.49 M49 - MODBUS serial port test
Only for headquarters use.

10.50 M50 - Data logger programming
In this menu it's possible to enable the data logger with via MODBUS data transmission. To enable the data logger, proceed as follows: press “ENTER”.

Select “ON” with “UP ARROW” and press “ENTER”.

Pressing “UP ARROW” is possible to select which data to include in the data logger.
To enable the data storage press “ENTER”, select “ON” and confirm with “ENTER”.

See the table below for the available data.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Date and Time</td>
</tr>
<tr>
<td>1</td>
<td>System Status</td>
</tr>
<tr>
<td>2</td>
<td>Current Windows</td>
</tr>
<tr>
<td>3</td>
<td>Signal Strength</td>
</tr>
<tr>
<td>4</td>
<td>Flow Rate</td>
</tr>
<tr>
<td>5</td>
<td>Velocity</td>
</tr>
<tr>
<td>6</td>
<td>Net Totalizer</td>
</tr>
<tr>
<td>7</td>
<td>Pos Totalizer</td>
</tr>
<tr>
<td>8</td>
<td>Neg Totalizer</td>
</tr>
<tr>
<td>9</td>
<td>Energy Flow Rate</td>
</tr>
<tr>
<td>10</td>
<td>Energy Net Totalizer</td>
</tr>
<tr>
<td>11</td>
<td>Energy Pos Totalizer</td>
</tr>
<tr>
<td>12</td>
<td>Energy Neg Totalizer</td>
</tr>
<tr>
<td>13</td>
<td>Fluid Velocity</td>
</tr>
<tr>
<td>14</td>
<td>RTD T1</td>
</tr>
<tr>
<td>15</td>
<td>RTD T2</td>
</tr>
<tr>
<td>16</td>
<td>Analog Input 3</td>
</tr>
<tr>
<td>17</td>
<td>Analog Input 4</td>
</tr>
<tr>
<td>18</td>
<td>Analog Input 5</td>
</tr>
<tr>
<td>19</td>
<td>Working Timer</td>
</tr>
<tr>
<td>20</td>
<td>Flow Today</td>
</tr>
<tr>
<td>21</td>
<td>Serial Number</td>
</tr>
</tbody>
</table>
10.51 M51 - Data logger timer programming

In this menu it’s possible to set the timer data logger timer.
To set the timer, proceed as follows:
press “ENTER”.

Set the data logger start time. Change the digit with “UP ARROW”
and move the cursor to the right with “SCROLL”.
Press “ENTER” to store the start time.

Set the data logger interval time between a recording and the other.
Change the digit with “UP ARROW” and move the cursor to the right with
“SCROLL”.
Press “ENTER” to store the data logger interval time.

Set the data logger recordings number to be made.
Change the digit with “UP ARROW” and move the cursor to the right with
“SCROLL”.
Press “ENTER” to store the storage number.
Setting a value between 8000 and 9000 data will be stored until the
available memory on the SD card is exhausted.

Set the timer, M51 will display the next data recording time and
the data recording number still to be made.

10.52 M52 - Data transmission programming

In this menu it’s possible to set the data transmission mode.
Default mode: 1. INVIA CON RS-485
Available settings:
1. Send To RS-485
2. Internal SerBus (data sending to SD card)

10.53 M53 - M53 - AL5 analog input displaying

NOT AVAILABLE.

10.54 M54 - OCT output pulse width programming

In this menu it’s possible to set the OCT output pulse width.
Range: 1÷500mS.

10.55 M55 - Analog output mode programming

In this menu it’s possible to set the analog output mode.
Default value: 0. 4-20mA
Available settings:
0. 4-20mA
1. 0-20mA
2. 0-20mA via RS232 (RS485)
3. 4-20mA vs.Sound
4. 20-4-20mA
5. 0-4-20mA
6. 20-0-20mA
7. 4-20mA vs.Vel.
8. 4-20mA vs.Energy
10.56 M56 - 4mA (or 0mA) output programming
In this menu it’s possible to set analog output scale beginning. The measure unit is in M55 programming function, per es: with M55 set to “0. 4-20mA”, the measure unit is m3/h; with M55 set to “3. 4-20mA vs.Vel.”, the measure unit is m/s.

<table>
<thead>
<tr>
<th>CL</th>
<th>4mA Output Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 m3/h</td>
</tr>
</tbody>
</table>

10.57 M57 - 20mA output programming
In this menu it’s possible to set the analog output full scale. The measure unit is in M55 programming function, per es: with M55 set to “0. 4-20mA”, the measure unit is m3/h; with M55 set to “3. 4-20mA vs.Vel.”, the measure unit is m/s.

<table>
<thead>
<tr>
<th>CL</th>
<th>20mA Output Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10000 m3/h</td>
</tr>
</tbody>
</table>

10.58 M58 - Analog output simulation
In this menu it’s possible to force the analog output signal value to check the drives connected to the 4÷20mA signal. To start the simulation, press “ENTER” and select with “UP ARROW” or “SCROLL” the desired option.
Available settings:
- 0 output signal 0mA
- 4 output signal 4mA
- 8 output signal 8mA
- 12 output signal 12mA
- 16 output signal 16mA
- 20 output signal 20mA

CL Checkup (mA)
Press ENT When Ready

<table>
<thead>
<tr>
<th>CL Checkup (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0</td>
</tr>
</tbody>
</table>

10.59 M59 - Analog output status displaying
In this menu it’s possible to display the analog output signal instantaneous value.
NB - It is not a measured value, but a value derived from a mathematical calculation depending on the M55, M56 and M57 settings.

CL Current Output

<table>
<thead>
<tr>
<th>CL Current Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0000 mA</td>
</tr>
</tbody>
</table>

10.60 M60 - System date and time programming
In this menu it is possible to set the date and the time.

AA-MM-GG HH:MM:SS
14-04-17 09:28:00

10.61 M61 - SGM101-F info displaying
In this menu, the SGM-101F unit details are available.

SGM-100 VER18.55
S/N=18330924

RS-485/RS-232 Setup
9600,None,8,1

Select Comm Protocol
MODBUS RTU Only

10.62 M62 - Serial port configuration programming
In this menu it’s possible to set the serial port configuration. The default settings are:
- BAUDRATE 9600
- PARITY NONE
- Data Bits 8
- Stop Bits 1

10.63 M63 - Communication protocol programming
In this menu it’s possible to set the communication protocol mode. Default setting: MODBUS RTU Only.
Available settings:
- MODBUS RTU Only
- MODBUS ASCII+ TDS7

Select Comm Protocol
MODBUS RTU Only
10.64 M64 - AL3 analog input programming

NOT AVAILABLE.

<table>
<thead>
<tr>
<th>AI3</th>
<th>Value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>~ 100</td>
</tr>
</tbody>
</table>

10.65 M65 - AL4 analog input programming

NOT AVAILABLE.

<table>
<thead>
<tr>
<th>AI4</th>
<th>Value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>~ 100</td>
</tr>
</tbody>
</table>

10.66 M66 - AL5 analog input programming

NOT AVAILABLE.

<table>
<thead>
<tr>
<th>AI5</th>
<th>Value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>~ 6</td>
</tr>
</tbody>
</table>

10.67 M67 - Frequency output range programming

In this menu it’s possible to set the OCT output range when it set as a frequency output proportional to the measured instantaneous flow rate.

<table>
<thead>
<tr>
<th>FO Frequency Range</th>
<th>Value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 ~ 1000 Hz</td>
</tr>
</tbody>
</table>

10.68 M68 - Frequency output low flow rate programming

In this menu it’s possible to set the frequency output low flow rate.

<table>
<thead>
<tr>
<th>Low FO Flow Rate</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 m³/h</td>
</tr>
</tbody>
</table>

10.69 M69 - Frequency output high flow rate programming

In this menu it’s possible to set the frequency output high flow rate.

<table>
<thead>
<tr>
<th>High FO Flow Rate</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10800 m³/h</td>
</tr>
</tbody>
</table>

10.70 M70 - Backlight interval programming

In this menu it’s possible to set the display backlight time. Range: 0÷60000 seconds.

<table>
<thead>
<tr>
<th>LCD Backlight Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 Sec</td>
</tr>
</tbody>
</table>

10.71 M71 - LCD contrast programming

In this menu it’s possible to set the LCD contrast. Range: 00÷31

Press “ENTER” to enter, then increase the contrast with the “UP ARROW” or decrease the contrast with “SCROLL”. Press “ENTER” to store.

<table>
<thead>
<tr>
<th>LCD Contrast</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

10.72 M72 - Operation time displaying

In this menu it’s possible to display the SGM-101F operation total time, since the last timer reset.

To reset the timer, proceed as follows:

Press “ENTER 2 times to enter, then select “YES” with “UP ARROW” and press “ENTER” to confirm the reset.

<table>
<thead>
<tr>
<th>Working Timer</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00000175:42:15</td>
</tr>
</tbody>
</table>

10.73 M73 - #1 Q min. alarm programming

In this menu it’s possible to set the minimum flow threshold for the #1 alarm.

<table>
<thead>
<tr>
<th>1# Alarm LOW Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 m³/h</td>
</tr>
</tbody>
</table>
10.74 M74 - #1 Q max. alarm programming
In this menu it’s possible to set the maximum flow threshold for the #1 alarm.

10.75 M75 - #2 Q min. alarm programming
In this menu it’s possible to set the minimum flow threshold for the #2 alarm.

10.76 M76 - #2 Q max. alarm programming
In this menu it’s possible to set the maximum flow threshold for the #2 alarm.

10.77 M77 - Buzzer operation programming
In this menu it’s possible to set the SGM-101F unit acoustic signal function.
Available settings:
0. No Signal
1. Poor Signal
2. Not Ready (No *R)
3. Reverse Flow
4. AO Over 100%
5. Fo Over 120%
6. Alarm #1
7. Reverse Alarm #2
8. Batch Controller
9. POS Int Pulse
10. NEG Int Pulse
11. NET Int Pulse
12. Energy POS Pulse
13. Energy NEG Pulse
14. Energy NET Pulse
15. MediaVel=>Thresh
16. MediaVelo<Thresh
17. ON/OFF via RS845
18. Timer (M51 Daily)
19. Timed Alarm #1
20. Timed Alarm #2
21. Batch Total Full
22. Timer by M51
23. Batch 90% Full
24. Key Stroking ON
25. Disable BEEPER

10.78 M78 - OCT output programming
In this menu it’s possible to set the function associated to the OCT digital output. Available settings:
0. No Signal
1. Poor Signal
2. Not Ready (No *R)
3. Reverse Flow
4. AO Over 100%
5. Fo Over 120%
6. Alarm #1
7. Reverse Alarm #2
8. Batch Controller
9. POS Int Pulse
10. NEG Int Pulse
11. NET Int Pulse
12. Energy POS Pulse
13. Energy NEG Pulse
14. Energy NET Pulse
15. MediaVel=>Thresh
16. MediaVelo<Thresh
17. ON/OFF via RS845
18. Timer (M51 Daily)
19. Timed Alarm #1
20. Timed Alarm #2
21. Batch Total Full
22. Timer by M51
23. Batch 90% Full
24. Flow Rate Pulse
25. Disable OCT
10.79 M79 - Relay output programming

In this menu it’s possible to set the function associated to the relay output.

Available settings:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>No Signal</td>
</tr>
<tr>
<td>1.</td>
<td>Poor Signal</td>
</tr>
<tr>
<td>2.</td>
<td>Not Ready (No *R)</td>
</tr>
<tr>
<td>3.</td>
<td>Reverse Flow</td>
</tr>
<tr>
<td>4.</td>
<td>AO Over 100%</td>
</tr>
<tr>
<td>5.</td>
<td>Fo Over 120%</td>
</tr>
<tr>
<td>6.</td>
<td>Alarm #1</td>
</tr>
<tr>
<td>7.</td>
<td>Reverse Alarm #2</td>
</tr>
<tr>
<td>8.</td>
<td>Batch Controller</td>
</tr>
<tr>
<td>9.</td>
<td>POS Int Pulse</td>
</tr>
<tr>
<td>10.</td>
<td>Energy POS Pulse</td>
</tr>
<tr>
<td>11.</td>
<td>Fo Over 120%</td>
</tr>
<tr>
<td>12.</td>
<td>Alarm #1</td>
</tr>
<tr>
<td>13.</td>
<td>Reverse Alarm #2</td>
</tr>
<tr>
<td>14.</td>
<td>Energy NET Pulse</td>
</tr>
<tr>
<td>15.</td>
<td>MediaVel=>Thresh</td>
</tr>
<tr>
<td>16.</td>
<td>MediaVelo<Thresh</td>
</tr>
<tr>
<td>17.</td>
<td>ON/OFF via RS845</td>
</tr>
<tr>
<td>18.</td>
<td>Timer (M51 Daily)</td>
</tr>
<tr>
<td>19.</td>
<td>Timed Alarm #1</td>
</tr>
<tr>
<td>20.</td>
<td>Timed Alarm #2</td>
</tr>
<tr>
<td>21.</td>
<td>Batch Total Full</td>
</tr>
<tr>
<td>22.</td>
<td>Timer by M51</td>
</tr>
<tr>
<td>23.</td>
<td>Batch 90% Full</td>
</tr>
<tr>
<td>24.</td>
<td>Flow Rate Pulse</td>
</tr>
<tr>
<td>25.</td>
<td>Disable Relay</td>
</tr>
</tbody>
</table>

10.80 M80 - Batch output programming

In this menu it’s possible to set the batch activation mode.

Available settings:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>Key Pressing</td>
</tr>
<tr>
<td>1.</td>
<td>Serial Port</td>
</tr>
<tr>
<td>2.</td>
<td>Al3 Rising Edge</td>
</tr>
<tr>
<td>3.</td>
<td>Al3 Falling Edge</td>
</tr>
<tr>
<td>4.</td>
<td>Al4 Rising Edge</td>
</tr>
<tr>
<td>5.</td>
<td>Al4 Falling Edge</td>
</tr>
<tr>
<td>6.</td>
<td>Al5 Rising Edge</td>
</tr>
<tr>
<td>7.</td>
<td>Al5 Falling Edge</td>
</tr>
<tr>
<td>8.</td>
<td>Timer-Periodical</td>
</tr>
<tr>
<td>9.</td>
<td>Time-daily</td>
</tr>
</tbody>
</table>

10.81 M81 - Batch volume programming

In this menu it’s possible to preset the batch volume value.

To preset the batch volume proceed as follows:

press “ENTER”.

Set the predetermined volume. Change the digit with “UP ARROW” and move the cursor to the right with “SCROLL”. Press “ENTER” to store.

With M80 set to “0. Key Pressing”, the display will show the message “Press ENT When Ready”; pressing “ENTER” starts the batch cycle.

During the batch cycle, the display shows:

1. the predetermined volume value.
2. the performed cycles Bach number (including the cycle in progress).
3. the batch status: ON active, OFF inactive.
4. the increase in the batch counter.

By pressing “ENTER” will stop the batch cycle.
10.82 M82 - SGM-101F unit events displaying

In this menu it’s possible to display the SGM-101F recorded daily, monthly and annual events.
To display the events, proceed as follows:
press “ENTER”.

Select the events display mode with “UP ARROW” or “SCROLL”.
Available settings:
0. Browse by Day; 1. Browse by Month; 2. Browse by Year
Press “ENTER” to confirm.

The display shows:

1. Event storage sequence number
2. Events storage period, with format: YY-MM-DD; YY-MM; YY
3. System status codes of the displayed storage period
4. Net totalization of the displayed storage period

Press “UP ARROW” or “SCROLL” to select events in succession.
Press “ENTER” to exit.

10.83 M83 - Totalizers automatic correction Enabling

In this menu it’s possible to enable the flow totalizers automatic correction during the period in which the unit SGM-101F is turned off.
An average flow rate value is calculated using the measured flow rate before shutdown and the flow rate measured after the system restarts.
This calculated average flow rate value is then used to increase the flow totalizer.

10.84 M84 - Heat meter unit programming

The display shows the previous setting.
Available settings:
0. Giga Joule (GJ)
1. Kilocalorie (Kc)
2. KWh
3. BTU

10.85 M85 - Temperature sensor input programming

In this menu it’s possible to select the supply and return temperatures source.

10.86 M86 - Specific heat programming

The display shows the previous setting.
Available settings:
0. GB
1. Fix Specific Heat

10.87 M87 - Heat meter totalizer programming

In this menu it’s possible to enable the heat meter totalizer.
10.88 M88 - Heat meter totalizer multiplier programming
The display shows the previous setting.
Default value: x1
Available settings:
0. x0.0001 (E-4)
1. x0.001 (1E-3)
2. x0.01
3. x0.1
4. x1
5. x10
6. x100
7. x1000
8. x10000 (E4)
9. x100000 (E5)
10. x1000000 (E6)

Energy Multiplier
4. X1 (E0)

10.89 M89 - Temperature differential displaying
In this menu it's possible to display the temperature difference between supply and return.

Temperature Diff.
0.0039 C

10.90 M90 - Transducers signal power and quality displaying
In this menu it's possible to display the ultrasonic transducers efficiency (UP and DN) and the ultrasonic signals quality (Q) processed by SGM-101F. For the “UP” (upstream transducer) and “DN” (downstream transducer) the 00.0 value indicates the ultrasonic signal non-reception, while the 99.9 value indicates the ultrasonic signal excellent reception; Normally the value is greater than 60.0. The processed ultrasonic signals quality (Q), has a range from 00.0 to 99.9. Normally the “Q” value is greater than 60.0.

Strength + Quality
UP: 78.5 DN: 78.8 Q=92

10.91 M91 - TOM/TOS % displaying
In this menu it's possible to display the ratio between the calculated and the measured transit time. Normally the value should be 100 ±3%. Differences in excess of the above, could mean improper transducers mounting, or incorrect programming values.

TOM/TOS
3.9478 %

10.92 M92 - Sound velocity in the fluid displaying
In this menu it's possible to display the sound speed in the fluid, measured by the SGM-101F. Normally the value should be similar to what is set in M21, accessible when M20 is set to “Other Liquid”. A significant values difference, could mean improper transducers mounting, or incorrect M21 programming values.

Fluid Sound Velocity
1486.35 m/s

10.93 M93 - Flight time and delta T.
In this menu it's possible to display the flight time measured by the SGM-101F and the difference in flight times, UP - DN.

TotalTime, DeltaTime
624.72uS 251.67nS

10.94 M94 - Reynolds number displaying
In this menu it's possible to display the calculated Reynolds number value.

Reynolds No, Profile
12354.8 0.97563
10.95 M+0 - Date/time/flow displaying when the unit was power off
In this menu it’s possible to display the SGM-101F power on or off events. Press “ENTER” to access.
Up to 64 events are recorded, in the range 00÷63. Select the event with “UP ARROW” or “SCROLL”. Press “ENTER” to exit.

10.96 M+1 - Total operating time displaying
In this menu it’s possible to display the SGM-101F total operating time. Pressing “ENTER” can be displayed the instantaneous negative flow rate measurement total time. Press “ENTER” to exit.

10.97 M+2 - Last power off date/time displaying
In this menu it’s possible to display the last power off date and time of the SGM-101F.

10.98 M+3 - Last measured flow rate displaying
In this menu it’s possible to display the last measured instantaneous flow rate value.

10.99 M+4 - SGM-101F on/off times number displaying
In this menu it’s possible to see how many times the unit SGM-101F has been switched on and off.

10.100 M+5 - Calculator and Converter
In this menu it’s possible to use the scientific calculator or the PT100 temperature converter. Press “ENTER” to use the calculator.
Enter number: with “UP ARROW” to change the digit and “SCROLL” to move the cursor to the right (max. 13 digits). Press “ENTER” to confirm.

Select the operation with “UP ARROW” or “SCROLL” and press “ENTER” to confirm (in the example shown next, the “PT100<>Temperature” function).
Available operations: +; -; x; /; 1/x; abs (x); x^x; sqrt (x); exp (x); ln (x); log (x); power(x,y); sin (x); cos (x); arcsin (x); arccos (x); arctan (x); Store in M (x=>M); Read M (x<=M); Add to M; Move x to y; PT100<>Temperature

The display now shows the selected operation result: 25.684°C
10.101 M+6 - Velocity threshold programming
In this menu it’s possible to set the maximum speed threshold to generate an alarm on the relay or on OCT.

<table>
<thead>
<tr>
<th>Media Vel. Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400 m/s</td>
</tr>
</tbody>
</table>

10.102 M+7 - Monthly totalizer displaying
In this menu it’s possible to display the monthly totalizer.

<table>
<thead>
<tr>
<th>Total Flow for Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>135.248 m³</td>
</tr>
</tbody>
</table>

10.103 M+8 - Annual totalizer displaying
In this menu it’s possible to display the annual totalizer.

<table>
<thead>
<tr>
<th>Total Flow This Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>35874.8 m³</td>
</tr>
</tbody>
</table>

10.104 M+9 - Echo absence error total time displaying (*H)
In this menu it’s possible to display the echo absence error condition total time.

<table>
<thead>
<tr>
<th>TIMER NO PRONT/G</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000001:06:42</td>
</tr>
</tbody>
</table>
11-MAIN PARAMETERS DESCRIPTION

<table>
<thead>
<tr>
<th>Name</th>
<th>Displaying</th>
<th>Description</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Ø</td>
<td>Pipe Outer Diameter</td>
<td>Pipe Outer diameter (Pipe cross section)</td>
<td>M11</td>
</tr>
<tr>
<td>Pipe thickness</td>
<td>Pipe Wall Thickness</td>
<td>Pipe thickness (Pipe cross section)</td>
<td>M12</td>
</tr>
<tr>
<td>Pipe material</td>
<td>Pipe Material</td>
<td>Carbon Steel; Stainless Steel; Cast Iron; Ductile Iron; Copper; PVC (Plastics in general); Aluminium; Asbestos; Fiberglass-Epoxy Other</td>
<td>M14</td>
</tr>
<tr>
<td>Inner lining material</td>
<td>Liner Material</td>
<td>None, No Liner; Tar Epoxy; Rubber; Mortar; Polypropylene; Polystyrol; Polystyrene; Polyester; Polyethylene; Ebonite; Teflon; Other</td>
<td>M16</td>
</tr>
<tr>
<td>Pipe inner lining thickness</td>
<td>Liner Thickness</td>
<td>Pipe inner lining thickness (Pipe cross section)</td>
<td>M18</td>
</tr>
<tr>
<td>Name</td>
<td>Displaying</td>
<td>Description</td>
<td>Menu</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Transducers mounting method</td>
<td>Transducer Mounting</td>
<td>The transducers may be mounted on the pipe in 4 different methods: V; Z; W. The mounting method choice is in application conditions function. The most frequently used mounting methods are V and Z.</td>
<td>M24</td>
</tr>
<tr>
<td>Transducers mounting distance</td>
<td>Transducer Spacing</td>
<td>The mounting axial distance, Lout, is automatically determined based on the following previously entered data: Ø pipe; pipe thickness; pipe material; eventual inner lining and its thickness; transducers mounting method.</td>
<td>M25</td>
</tr>
<tr>
<td>Instantaneous flow rate measure unit</td>
<td>Flow Rate Unit</td>
<td>Measure units associated with the instantaneous flow rate measurement. Is possible to select 8 different measure units for the volume: Cubic Meter (m³); Liter (l); US Gallon (Gal); UK Gallon (IGL); Million US Gallon; Cubic Feet (CF); US Oil Barrel (OB); UK Oil Barrel (IB); and 4 measure units for the time: hour (/h); /min (/m); /sec. (/s); /day (/d)</td>
<td>M31</td>
</tr>
<tr>
<td>Flow totalizers measure unit</td>
<td>Totalizer Units</td>
<td>Measure units associated with the flow totalizers. Is possible to select 8 different measure units: Cubic Meter (m³); Liter (l); US Gallon (Gal); UK Gallon (IGL); Million US Gallon; Cubic Feet (CF); US Oil Barrel (OB); UK Oil Barrel (IB)</td>
<td>M32</td>
</tr>
<tr>
<td>Name</td>
<td>Displaying</td>
<td>Description</td>
<td>Menu</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Damping time</td>
<td>Damping</td>
<td>The damping time defines the displayed flow measurement refresh rate in relation to the detected flow measurement variation. Range: 0÷9990 seconds</td>
<td>M40</td>
</tr>
<tr>
<td>Flow velocity cut-off value</td>
<td>Low Flow Cutoff Val.</td>
<td>When the measured flow velocity is less than the cutoff value, the display will show the instantaneous flow rate measure at fixed 0. Range 0.000 ÷ 0.25m/s</td>
<td>M41</td>
</tr>
<tr>
<td>Zero flow calibration</td>
<td>Set Zero</td>
<td>When the fluid in the pipe is stopped, the flow value must be equal to 0. In case it is not, need to calibrate the Zero flow.</td>
<td>M42</td>
</tr>
<tr>
<td>Correction coefficient</td>
<td>Scale Factor</td>
<td>Coefficient for correcting the measurement accuracy. Range 0.5 ÷ 1.5%</td>
<td>M45</td>
</tr>
<tr>
<td>Name</td>
<td>Displaying</td>
<td>Description</td>
<td>Menu</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>System protection password</td>
<td>System Lock</td>
<td>The system protection password is used to prevent programming modification, or to not allow resetting totalizers. NB - write down your password</td>
<td>M47</td>
</tr>
<tr>
<td>Flow velocity cut-off value</td>
<td>Low Flow Cutoff Val.</td>
<td>It's possible to set the digital pulse width during the counting. Range: 0.01-500ms</td>
<td>M54</td>
</tr>
<tr>
<td>4÷20mA output</td>
<td>CL Mode Select</td>
<td>N. 9 selectable analog signal output mode: 4-20mA; 0-20mA; 0-20mA via RS232 (RS485); 4-20mA vs. Sound; 20-4-20mA; 0-4-20mA; 20-0-20mA; 4-20mA vs. Vel.; 4-20mA vs. Energy</td>
<td>M55</td>
</tr>
<tr>
<td>4÷20mA output scale beginning</td>
<td>4mA Output Value</td>
<td>It's the value of quantity, based on M55 choice, that is associated to analog output begin scale.</td>
<td>M56</td>
</tr>
<tr>
<td>4÷20mA output full scale</td>
<td>VALORE RIF. A 20 mA</td>
<td>It's the value of quantity, based on M55 choice, that is associated to analog output end scale.</td>
<td>M57</td>
</tr>
<tr>
<td>Date and Time</td>
<td>YY-MM-DD HH:MM:SS</td>
<td>Time and date maintaining is secured by an internal battery with life of about 10 years. In the case where the battery power is exhausted, turning off the SGM-101F all the time and date data will be lost.</td>
<td>M60</td>
</tr>
<tr>
<td>Digital output</td>
<td>OCT Output Setup</td>
<td>The digital output “OCT” can be set with 26 different functions. It's possible to set the digital output to remotely send the totalizer pulse with option # 24: Flow Rate Pulse.</td>
<td>M78</td>
</tr>
</tbody>
</table>
12-TROUBLESHOOTING

12.1 Error messages and corrective actions

The SGM-100F has a self-diagnosis system which detects hardware problems. The instrument will show “*F” in the top left corner of the display and it will be necessary to power on again the SGM-100F in order to see the error message and the solution:

<table>
<thead>
<tr>
<th>Error message</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Checking Error</td>
<td>System ROM illegal or error</td>
<td>Contact the producer</td>
</tr>
<tr>
<td>Stored Data Error</td>
<td>Memory parameter data error</td>
<td>Press ENT key and restore default parameters</td>
</tr>
<tr>
<td>System Data Memory Error</td>
<td>System stored data block error</td>
<td>Restart or contact headquarters</td>
</tr>
<tr>
<td>Circuit Hardware Error</td>
<td>Sub-CPU circuit fatal error</td>
<td>Restart or contact headquarters</td>
</tr>
<tr>
<td>Timer Slow/Fast Error</td>
<td>System Clock error</td>
<td>Restart or contact headquarters</td>
</tr>
<tr>
<td>Clock Error</td>
<td>Abnormal clock inside the hardware</td>
<td>Contact headquarters</td>
</tr>
<tr>
<td>CPU or IRQ Error</td>
<td>--------</td>
<td>Restart</td>
</tr>
<tr>
<td>Host resetting Repeatedly</td>
<td>--------</td>
<td>Contact headquarters</td>
</tr>
<tr>
<td>Time or Date Error</td>
<td>Date/Time system chip error</td>
<td>Reset data/Time</td>
</tr>
<tr>
<td>No display</td>
<td>Bad wiring connection</td>
<td>Check for electrical connections</td>
</tr>
<tr>
<td>Stroke key - No response</td>
<td>Keypad locked</td>
<td>Enter the password to unlocking</td>
</tr>
</tbody>
</table>
12.2 Error codes and solutions

When the instrument detects an operating error, a letter will appear on the top left corner of the display. In M00, M01, M02, M03, M90 and M08 can be displayed the error message. Refer to the following table for the solution:

<table>
<thead>
<tr>
<th>Error codes</th>
<th>Displayed message</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>System Normal</td>
<td>No error</td>
<td>1) Tight the transducers on the pipe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2) Check the setted parameters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3) Clean the pipe surface and remove any rust</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4) Change installing position</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5) Wait until the new liner is dry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6) Check the cables.</td>
</tr>
<tr>
<td>I</td>
<td>Detected No Signal</td>
<td>1) No detected signal</td>
<td>1) Tight the transducers on the pipe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Sensors installed improperly</td>
<td>2) Check the setted parameters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Too many encrustations</td>
<td>3) Clean the pipe surface and remove any rust</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4) Pipe lining too thick</td>
<td>4) Change installing position</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5) The transducer cables are not properly connected</td>
<td>5) Wait until the new liner is dry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6) Check the cables.</td>
</tr>
<tr>
<td>J</td>
<td>Hardware Error</td>
<td>Hardware problems</td>
<td>Contact headquarters</td>
</tr>
<tr>
<td>H</td>
<td>PoorSig Detected</td>
<td>1) Weak signal detected</td>
<td>1) Tight the transducers on the pipe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Sensors installed improperly</td>
<td>2) Check the setted parameters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Too many encrustations</td>
<td>3) Clean the pipe surface and remove any rust</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4) Pipe lining too thick</td>
<td>4) Change installing position</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5) The transducer cables are not properly connected</td>
<td>5) Wait until the new liner is dry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6) Check the cables.</td>
</tr>
<tr>
<td>E</td>
<td>Current Loop over 20mA</td>
<td>1) 4÷20mA current loop over 100%</td>
<td>Check the values setted in menu M56 and if the actual flow is too high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Current output Improper settings</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Freq OutputOver</td>
<td>1) Frequency output over 120%</td>
<td>Check the values setted in menu M66-M67-M68 and M69 and if the actual flow is too high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) frequency output Improper setting or actual flow too high</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Refer to table 2</td>
<td>1) Error in self-diagnosis during power-on</td>
<td>1) Restart</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Permanent hardware error</td>
<td>2) Contact headquarters</td>
</tr>
<tr>
<td>G</td>
<td>Adjustig gain S1-S2-</td>
<td>The instrument is running the automatic checkup and the numbers indicate the sequential progress.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S3-S4 (displayed on M00, M01, M02 and M03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Empty pipe</td>
<td>1) No liquid inside the pipe</td>
<td>1) Reposition the transducer where the pipe is filled with fluid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Setting error in M29</td>
<td>2) Set 0 in M29</td>
</tr>
</tbody>
</table>

12.3 Other problems and solutions

1) The actual flow inside the pipe is not standstill, but the instrument displays 0.0000 for the flow rate, and ‘R’ displaying signal strength and the signal quality Q (value) has a satisfactory value. The problem are likely caused by the user who has used the ‘Set Zero’ function on this non-standstill flowing pipe. To solve this problem, use the ‘Reset Zero’ function on menu window M43.

2) The displayed flow rate is much lower or much higher than the actual flow rate in the pipe under normal working conditions.

 a) There is probably an offset value wrongly entered by the user in M44. Enter ‘0’ in M44.
 b) Check the transducers installation.
 c) There is a ‘Zero Point’ setted. Try to ‘zero’ the instrument by using M42 and make sure that the flow inside the pipe should be standstill.

13-COMMUNICATION PROTOCOL

The SGM-101F has a RS485 standard communication interface, modbus registers are available on request.
In conformity to the company and check procedures I certify that the equipment:

(Transit time ultrasonic flowmeter)

is conform to the technical requirements on Technical Data and it is made in conformity to the procedure

Quality Control Manager: .. Production and check date: ...