S20-SWW / S40-SWW

The S20-SWW and S40-SWW Suspended solids sensors bring sophisticated process control and measurement to waste water and storm water applications. The Immersion style sensors are designed for continuous on-line monitoring of suspended solids. The sensors simplify installation and set-up with a 2 point calibration using a simple PC USB interface.

Applications for the sensors include:
- Storm water sediment runoff monitoring
- Flocculant dosing and control
- Wastewater monitoring and control.

Features
- Four beam self-compensating sensors, virtually eliminates drift due to contamination or electronic ageing
- Immersion style sensors
- Simple user interface
- Accurate, repeatable & reliable measurements
- Connect directly with 4-20mA and Modbus RS485
- Optional cleaning head
Specifications

Measuring Range (will vary according to media and particle characteristics)

<table>
<thead>
<tr>
<th>Type</th>
<th>Stock No</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S20-SWW</td>
<td>1921</td>
<td>Immersion style Suspended solids sensor, 10 Metre cable, 1.25" NPT thread, Modbus + 4-20mA output. Range of measurement: 0-10g/l in normal activated sludge.</td>
</tr>
<tr>
<td>S40-SWW</td>
<td>1922</td>
<td>Immersion style Suspended solids sensor, 10 Metre cable, 1.25" NPT thread, Modbus + 4-20mA output. Range of measurement: 0-2.5g/l in normal activated sludge.</td>
</tr>
<tr>
<td>S20-CLEAN</td>
<td>1919</td>
<td>S20 Immersion sensor cleaning head assembly.</td>
</tr>
<tr>
<td>S40-CLEAN</td>
<td>1920</td>
<td>S40 Immersion sensor cleaning head assembly.</td>
</tr>
</tbody>
</table>

Order Codes

These products comply with current European Directives

LTH Electronics Ltd reserves the right to make changes to this data sheet or the product without notice, as part of our policy of continued developments and improvements. All care has been taken to ensure the accuracy of information contained in this data sheet. However we cannot accept responsibility for any errors or damages resulting from errors or inaccuracies of information contained herein.

Issue: 10.18