BED17
Electrodeless Conductivity Monitor

Operation Guide
Preface

Product warranty
The BED17 Electrodeless Conductivity Monitor has a warranty against defects in materials and workmanship for three years from the date of shipment. During this period LTH will, at its own discretion, either repair or replace products that prove to be defective. The associated software is provided ‘as is’ without warranty.

Limitation of warranty
The foregoing warranty does not cover damage caused by accidental misuse, abuse, neglect, misapplication or modification.

No warranty of fitness for a particular purpose is offered. The user assumes the entire risk of using the product. Any liability of LTH is limited exclusively to the replacement of defective materials or workmanship.

Disclaimer
LTH Electronics Ltd reserves the right to make changes to this manual or the instrument without notice, as part of our policy of continued developments and improvements.

All care has been taken to ensure accuracy of information contained in this manual. However, we cannot accept responsibility for any errors or damages resulting from errors or inaccuracies of information herein.

Copyright and trademarks
All rights reserved. Translations, reprinting or copying by any means of this manual, complete or in part or in any different form requires our explicit approval.

BED17 is a trademark of LTH Electronics Ltd
Third edition: May 2019

LTH Electronics Ltd
Chaul End Lane
Luton, Bedfordshire
LU4 8EZ
England

Telephone : +44 (0)1582 593693
Fax : +44 (0)1582 598036
email : sales@lth.co.uk
Web : www.lth.co.uk
Manufacturing Standards

CE

Electromagnetic compatibility

This instrument has been designed to comply with the standards and regulations set down by the European EMC Directive 2014/30/EU using BS EN 61326-1: 2013

Safety

This instrument has been designed to comply with the standards and regulations set down by the European Low Voltage Directive 2014/35/EU using BS EN 61010-1: 2010

Restriction of Hazardous Substances

This instrument has been produced to comply with the standards and regulations set down by the European Restriction of Hazardous Substances Directive 2011/65/EU using BS EN 50581: 2012

Quality

This instrument has been manufactured under the following quality standard:

Note: The standards referred to in the design and construction of LTH products are those prevailing at the time of product launch. As the standards are altered from time to time, we reserve the right to include design modifications that are deemed necessary to comply with the new or revised regulations.

Disposal

As per directive 2012/19/EU, please observe the applicable local or national regulations concerning the disposal of waste electrical and electronic equipment.
Declaration of Conformity

DECLARATION OF CONFORMITY
LTH Electronics Ltd
declare, accepting full responsibility, that the product(s)
BED17, BED17LV, BED17A, BED17LVA
conforms with all relevant European Directives:

BS EN 61326-1 : 2013
(Electrical Equipment for Measurement, Control and Laboratory Use)
in accordance with the provisions of
the 2014/30/EU (EMC) directive.

BS EN 61010-1 : 2010 (Equipment Safety)
in accordance with the provisions of
the 2014/35/EU (Low Voltage) directive.

BS EN 50581 : 2012
(Electrical and Electronic Products)
in accordance with the provisions of
the 2011/65/EU (RoHS) directive.

Issued in the United Kingdom on
21st May 2019 for the company by:

Neil Adams
Managing Director
Contents

Preface ... 1
Contents ... 5
Introduction .. 7
Electrodeless Conductivity Input Specification ... 8
Installation – Safety & EMC ... 11
Noise suppression .. 12
Enclosure ... 13
 Surface-Mounting .. 14
 Panel-Mounting .. 15
 Pipe-Mounting .. 16
Terminal Operation ... 17
Supply Voltage Connections ... 17
Relay Connections ... 18
Current Output Connections .. 18
Digital Inputs .. 19
MicroSD Card Interface .. 19
Installation and Choice of Electrodeless Conductivity Sensors 20
 BED17 Electrodeless Conductivity Input Connection Details 22
 Temperature Sensor Connections .. 23
 Extension Cable Arrangement ... 24
User Interface ... 25
 The Front Screen .. 25
 Security Code Access .. 26
Electrodeless Conductivity Input Setup .. 27
 Channel Menu ... 27
 Units .. 27
 Setup Solution .. 28
 Temperature Compensation mode ... 29
 Input Filtering (Averaging) .. 30
 Simulated Range .. 31
Contents

Calibration .. 32
Calibration Menu ... 33
Front Screen Calibration Access ... 36
Sensor Loop Calibration .. 37
Setpoints ... 39
Trigger .. 39
Hysteresis .. 43
Setpoint Dose Alarm ... 44
0/4-20mA Output ... 46
Output Mode ... 46
On Error .. 47
Calibration .. 48
Digital Inputs ... 50
Polarity ... 51
Configuration .. 52
Main Menu .. 52
Unit Flash On Error .. 53
Set Display Contrast .. 53
Software Version .. 53
Serial Number .. 54
Contact Information ... 54
Update Software .. 55
Save, Restore & Reset .. 56
Service .. 58
Service Alarm ... 58
Appendix A - Solution Conversion ... 59
Appendix B - Temperature Coefficient ... 60
Temperature Data ... 60
Appendix C - Error Messages ... 61
Fault Finding .. 63
Guarantee and Service ... 65
Introduction

The BED17 is a microprocessor controlled electrodeless (toroidal) conductivity measurement instrument that can be used with LTH’s range of ECS conductivity cells to measure and control a broad spectrum of solution conductivity. To achieve this, the instrument utilises a multifunction LCD to display the primary reading and temperature, show operational status and to provide an intuitive user interface.

As standard the instrument is a simple to install IP66 rated Wall-mount instrument, however with the addition of a suitable mounting kit it can either be installed as a Panel-mount or Pipe-mount instrument.

The instrument has two on-board volt-free normally-open relays with adjustable setpoint value and hysteresis. Either one can be set to activate if the conductivity is above or below the setpoint allowing the instrument to be used in a variety of dosing or bleeding applications. Additional setpoint functions include delayed activation, dose alarm timer, and proportional control, whilst the status of the relays can be seen via the main screen of the instrument.

Additionally, the instrument features up to two industry standard, isolated, 0/4-20mA current outputs that features adjustable scaling, selectable on-error states and loop fault detection. Output A allows the instrument to transmit the primary reading whilst output B enables the retransmission of the observed process temperature, both enable the instrument to be used for remote monitoring purposes.

Also fitted is a single contact input which allows the instrument to be remotely set to an offline state that forces the relays to deactivate and the current output to a pre-defined state.

Depending upon version purchased the instrument is powered by either 85-265V AC or 12-30V DC.
Electrodeless Conductivity Input Specification

Measurement Input
- ECS20 or ECS40 Series electrodeless conductivity sensor.

Connection Cable
- Up to 30 meters LTH 54E/ 54H.

Ranges of Measurement
- 0-999.9μS/cm, 0-9.999mS/cm, 0-999.9 ppm, 0-9999 ppm, 0-999.9 ppt (parts per thousand).

Solution
- Defined by a user entered 2 to 9 point curve.

User defined scale: 0 to 999.9, 0 to 99.99, 0 to 999.9, and 0 to 9999.

User defined units up to 5 characters.

Range Selection
- Internal single or auto range.

Conductivity Accuracy
- ± 1% of range.

Linearity
- ± 0.1% of range.

Repeatability
- ± 0.1% of range.

Operator Adjustment
- Conductivity ± 10% slope.
- Solution ±20% offset.

Temperature Sensor
- Pt1000 RTD input. Up to 30 meters of cable. Temperature sensor can be mounted in the sensor or separately.

Range of Temperature Measurement
- -50 °C to +150 °C (-58 °F to +302 °F) for full specification.

Temperature Accuracy
- ± 0.5 °C

Operator Adjustment
- ± 50 °C or ± 122 °F

Range of Temperature Compensation
- -10 °C to +150 °C (+14 °F to +302 °F) for full specification.

Temperature Compensation Type
- Automatic or manual, Variable slope 0 - 9.99 %/°C

Temperature Compensation Base
- Selectable at 20 °C or 25 °C.

Off-Line Facility
- The relays are de-energised and the current output is held at a user defined level.

Ambient Operating Conditions
- Temperature -20 to +55°C, Relative Humidity 5 to 95%, non-condensing.

Ambient Temperature Variation
- ±0.01% of range / °C (typical)

Display
- 3¼” 240x128 dot LCD Module

Display Backlight
- Can be set to flash to indicate the instruments alarm status.

Buttons
- 5 tactile feedback micro-switched, silicone rubber
<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Input</td>
<td>Single contact input for remote activation of user defined operations. Can be configured to operate in either normally open or normally closed modes.</td>
</tr>
<tr>
<td>Current Outputs Specification</td>
<td>Single current output as standard with option of two on advance models, selectable 0-20mA or 4-20mA into 750 ohms max, fully isolated to 2kV. Expandable up to 5% of any operating range and offset anywhere in that range.</td>
</tr>
<tr>
<td>Current Outputs Adjustment</td>
<td>±0.01mA, 3 point 0/4-20 mA for remote monitor calibration.</td>
</tr>
<tr>
<td>Setpoints and Control Relays Specification</td>
<td>2 normally open fully configurable setpoints with volt free contacts for each relay. Rated at 5A @ 30V DC / 5A @ 250V AC.</td>
</tr>
<tr>
<td>Setpoint Modes</td>
<td>High, Low Band, Proportional (Setpoint 2 only), Accumulation (Setpoint 2 only)</td>
</tr>
<tr>
<td></td>
<td>Delay timer adjustable from 00:00 to 59:59 mm:ss.</td>
</tr>
<tr>
<td></td>
<td>Hysteresis 0 to 9.99%.</td>
</tr>
<tr>
<td></td>
<td>Dose alarm timer, with supplementary initial charge function. Both adjustable from 00:00 to 59:59 mm:ss.</td>
</tr>
<tr>
<td>MicroSD Card Interface</td>
<td>Enables on site upgrading of instrument software. SD, SDHC and SDXC-FAT32 cards supported.</td>
</tr>
<tr>
<td>EMC</td>
<td>2014/30/EU using BS EN 61326-1: 2013.</td>
</tr>
<tr>
<td>Power Supply</td>
<td>Universal 90-265V AC, 10W max.</td>
</tr>
<tr>
<td></td>
<td>LV Option 12 – 30 V DC, 6W max.</td>
</tr>
<tr>
<td>Instrument Housing</td>
<td>UL 94-V0 PC/ABS.</td>
</tr>
<tr>
<td>Ingress Protection Rating (IEC 60529 Protection Rating)</td>
<td>IP66.</td>
</tr>
<tr>
<td>Weight</td>
<td>Maximum 800 grams (instrument only).</td>
</tr>
<tr>
<td>Dimensions</td>
<td>175 x 150 x 119 mm (H, W, D).</td>
</tr>
</tbody>
</table>
Installation – Safety & EMC

This chapter describes how to install the instrument and how to connect the unit to a power source and auxiliary equipment.

Although today’s electronic components are very reliable, it should be anticipated in any system design that a component could fail and it is therefore desirable to make sure a system will fail safe. This could include the provision of an additional monitoring device, depending upon the particular application and any consequences of an instrument or sensor failure.

Wiring Installation

The specified performance of the instrument is entirely dependent on correct installation. For this reason, the installer should thoroughly read the following instructions before attempting to make any electrical connections to the unit.

CAUTION! ALWAYS REMOVE THE MAIN POWER FROM THE SYSTEM BEFORE ATTEMPTING ANY ALTERATIONS TO THE WIRING. ENSURE THAT BOTH POWER INPUT LINES ARE ISOLATED. MAKE SURE THAT THE POWER CANNOT BE SWITCHED ON BY ACCIDENT Whilst THE UNIT IS BEING CONNECTED. FOR SAFETY REASONS AN EARTH CONNECTION MUST BE MADE TO THE EARTH TERMINAL OF THIS INSTRUMENT.

LOCAL WIRING AND SAFETY REGULATIONS SHOULD BE STRICTLY ADHERED TO WHEN INSTALLING THIS UNIT. SHOULD THESE REGULATIONS CONFLICT WITH THE FOLLOWING INSTRUCTIONS, CONTACT LTH ELECTRONICS OR AN AUTHORISED LOCAL DISTRIBUTOR FOR ADVICE.

To maintain the specified levels of Electro Magnetic Compatibility (EMC, susceptibility to and emission of electrical noise, transients and radio frequency signals) it is essential that the types of cables recommended within these instructions be used. If the installation instructions are followed carefully and precisely, the instrument will achieve and maintain the levels of EMC protection stated in the specification. Any equipment to which this unit is connected must also have the same or similar EMC control to prevent undue interference to the system.

- Terminations at the connectors should have any excess wire cut back so that a minimal amount of wire is left free to radiate electrical pick-up inside or close to the instrument housing.

N.B. The use of CE marked equipment to build a system does not necessarily mean that the completed system will comply with the European requirements for EMC.
Noise suppression

In common with other electronic circuitry, the instrument may be affected by high level, short duration noise spikes arising from electromagnetic interference (EMI) or radio frequency interference (RFI). To minimise the possibility of such problems occurring, the following recommendations should be followed when installing the unit in an environment where such interference could potentially occur.

The following noise generating sources can affect the instrument through capacitive or inductive coupling.

- Relay coils
- Solenoids
- AC power wires, particularly at or above 100V AC
- Current carrying cables
- Thyristor field exciters
- Radio frequency transmissions
- Contactors
- Motor starters
- Business and industrial machines
- Power tools
- High intensity discharge lights
- Silicon control rectifiers that are phase angle fired

The instrument is designed with a high degree of noise rejection built in to minimise the potential for interference from these sources, but it is recommended that you apply the following wiring practices as an added precaution. Cables transmitting low level signals should not be routed near contactors, motors, generators, radio transmitters, or wires carrying large currents.

If noise sources are so severe that the instrument’s operation is impaired, or even halted, the following external modifications should be made, as appropriate:

- Fit arc suppressors across active relay or contactor contacts in the vicinity.
- Run signal cables inside steel tubing as much as is practical.
- Use the internal relays to switch external slave relays or contactors when switching heavy or reactive loads.
- Fit an in-line mains filter close to the power terminals of the instrument.
Enclosure

The BED17 as standard is designed to be mounted on a wall or surface via the two holes located in the rear half of the enclosure. Alternatively it can be mounted to a panel or a pipe using optional mounting kits.

The enclosure should be opened as following.

To close repeat process in reverse, folding the hinge into the rear.
Surface-Mounting

- LTH recommends using No. 10 x 1¼ inch round head screws or similar for mounting.
- Care must be taken when fitting the instrument on uneven walls or surfaces.
- Once installed make sure accompanying IP protection plugs are installed over the mounting holes on the inside rear of the enclosure.
Panel-Mounting

- 138.0mm Square Cut Out
- Uses Kit Part Number 6014.
- Fit the gasket seal into the groove on the back of the instrument front.
- Attach the Mounting Plate to the rear of the case with the supplied screws.
- To pass instrument rear through panel cut out remove cable glands.
- Use the 4 supplied screw clamps to affix the instrument to the panel.
Pipe-Mounting

- Fits pipe 50-100mm
- Uses Kit Part Number 6024.
- Attach the Mounting Plate to the rear of the case with the supplied screws.
- Pass supplied mounting straps through plate loops and tighten round pipe as required.
- Fit the accompanying IP protection plugs over the internal mounting holes on the inside rear of the enclosure.
Terminal Operation

Whilst pushing terminal lever down using a 3.5mm Slotted Screwdriver, insert wire into opening and release level to retain.

Supply Voltage Connections

Depending upon version purchased BED17 can be powered from either 90-265V AC or 12-30V DC supply voltage. Refer to the label adjacent to the power supply terminals for the input voltage limits. Exceeding these limits may damage the instrument.

90-265V AC Power Connections

90-265V AC

12-30V DC Power Connections

12-30V DC
Relay Connections

The BED17 is supplied with 2 normally open volt free relays designated 1 & 2. The relay contacts are connected to the terminals only and are electrically isolated from the instrument itself. **They must be connected in series with a 5 Amp fuse.** A contact arc suppressor may be required to prevent excessive electrical noise, depending upon the load. To switch more than 5 Amps will require a slave relay.

Relays 1 & 2 Connection Details

Current Output Connections

The BED17 is supplied as standard with a single current output or as an option with two, either can terminate into a load resistance not exceeding 750Ω and are both galvanically isolated from the rest of the instrument. For best noise immunity use a screened twisted pair cable, with the screen connected to Earth at one end. Use a sufficiently large cable to avoid a high resistance in the overall current loop.

Basic Instrument Current Output Connection Detail

Advanced Instrument Current Output Connection Detail
Digital Inputs

The BED17 features a single digital input, which can be used to initiate a user configurable instrument operation by use of a volt free link, switch or relay. The instrument can be configured to initiate the appropriate action when the contact either closes or opens.

![Digital Input Diagram](image)

Current Output Connection Detail.

MicroSD Card Interface

The BED17 features a MicroSD card interface which is compatible with SD, SDHC and SDXC formatted cards (N.B. SDXC cards may need formatted to Fat32 before use). Its primary function is to enable the upgrading of the instruments operating software.

To insert the card, ensure that the side notch is on the right-hand side of the card, and then just push it all the way in to the socket. To remove the card push it in then release and the card should then come out of the socket. N.B. It may be required to pull the card out of the last bit of the socket.

![MicroSD Card Slot](image)
Installation and Choice of Electrodeless Conductivity Sensors

The choice of the correct type of electrodeless conductivity sensor and how and where to mount the sensor, so that it has a representative sample of solution are probably the two most important considerations when installing a conductivity system.

The following criteria are of great importance during selection:

- The choice of the best method of measurement
- Use of the correct materials for temperature and corrosion resistance
- Position of sensor for robustness and service access
- Ensuring a representative, uncontaminated solution sample

The electrodeless method of measuring conductivity has many advantages over conventional methods in particular the sensors will operate with virtually zero maintenance and provide reliable measurements over extended periods of time.

LTH provides a selection of electrodeless sensors in a variety of materials including PEEK™ a food grade material with excellent chemical resistance and high temperature performance. Contact LTH Electronics or your local distributor for more information.

To ensure correct sensor mounting the following conditions should be observed:

- The solution around the sensor is representative of the solution as a whole.
- For best performance line up the cross hole with direction of flow.
- A moderate flow is maintained to provide an “up to date” sample. Excessive flow rates, however, can cause cavitations and turbulence within the sensor, which will result in inaccurate readings.
- The sensor is mounted so that air bubbles do not lodge within it - displacing solutions and affecting the sample volume (air is not conductive).
- Similarly it must be in a position so that sludge and particulate matter does not collect within the sensor.

The electrodeless sensor will need a minimum clearance around it when installed or making measurements in a sample. Do not rest it on the bottom of a tank or vessel. See the following figures for details.
ECS20 SERIES SENSORS
Sensor Installation Clearance

Care should also be taken to ensure the position of the sensor within the flow is correct.
Installation

BED17 Electrodeless Conductivity Input Connection Details

<table>
<thead>
<tr>
<th>SHD</th>
<th>RTD</th>
<th>RTD</th>
<th>D</th>
<th>D</th>
<th>R</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

ECS INPUT

- Green/Yellow (Outer Screen)
- Blue/Black/White Temperature Input
- Drive - Yellow Sleeve (Screen 2)
- Return - Red Sleeve (Screen 1)
- Sensor Input

Electrodeless Conductivity 54E Cable Connection Details

BED17 ECS Input

<table>
<thead>
<tr>
<th>SHD</th>
<th>RTD</th>
<th>RTD</th>
<th>D</th>
<th>D</th>
<th>R</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

ECS INPUT

- Green/Yellow (Outer Screen)
- Yellow Temperature Input
- Drive - Yellow Sleeve (Screen 2)
- Return - Red Sleeve (Screen 1)
- Sensor Input

Electrodeless Conductivity 54H Cable Connection Details
Temperature Sensor Connections

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Diagram 1</th>
<th>Diagram 2</th>
<th>Diagram 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Wire RTD Temperature Connection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Wire RTD Temperature Connection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Wire RTD Temperature Connection</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extension Cable Arrangement

It is strongly recommended that only LTH 54E is used to extend the sensor / instrument distance. When extending the cable, a terminal block can be used to connect two lengths of cable. The user should be careful to avoid wiring the positive drive and return signals into adjacent locations on the terminal block. The preferred arrangement would be to have the positive signals as far apart from each other as the terminal block will allow with the negatives between them and the earth between the negative signals as shown in the following diagram.

<table>
<thead>
<tr>
<th>Drive +</th>
<th>Drive -</th>
<th>Earth</th>
<th>Return -</th>
<th>Return +</th>
</tr>
</thead>
</table>

Recommended Extension Terminal Block Arrangement

The following diagram details the connections required to extend a 54H cable as found on the ECS20 sensors with 54E cable.

ECS20 54H Cable

ECS20 54H Cable To 54E Extension Cable Connection Details
User Interface

CAUTION! BEFORE PROCEEDING, ENSURE THAT THE INSTALLATION INSTRUCTIONS HAVE BEEN FOLLOWED CORRECTLY. FAILURE TO DO SO MAY RESULT IN AN ELECTRICALLY HAZARDOUS INSTALLATION OR IRREPARABLE DAMAGE TO THE INSTRUMENT.

The BED17 uses a 3¾" 240x128 dot LCD Module to display the primary reading and temperature, show operational status and to provide an intuitive user interface. This is accompanied by 5 control buttons whose function varies depending upon which screen the user is viewing. The button function is indicated by the control section at the bottom of the display.

The Front Screen

The instrument configuration is accessible by pressing the menu button on the front screen.

The main menu is split into two main sections. The top shows the current menu you are currently in the access status of the instrument and whether there are further menu options below. The bottom section shows the current options for that menu which may be selected by moving the cursor with the arrow buttons and pressing the enter button. The exit button is used to return to the previous menu. If no buttons are pressed after 2 minutes the instrument will default back to the front screen.
Security Code Access

To protect the instrument setup from unauthorised or accidental tampering, a security access code system is present. This is implemented via the instrument’s menu system which operates in two modes, “locked” as indicated by a padlock symbol and “unlocked” as indicated by a key symbol. The locked mode allows the user to observe the instruments configuration but without the ability to change it. If the user wishes to change a setting then the “Security Code” menu will appear that will prompt them to enter the security code which will then change the instruments mode to “unlocked”. Once unlocked, the user can change any setting without having to re-enter the security access code, however the instrument will automatically lock itself if no further buttons are pressed after 2 minutes 30 seconds.

The user can select their own access code in the set access code function of the configuration menu, or alternatively they can disable the security system permanently by changing the access code to 0000.

The default security access code is 1000

Select the option you wish to change and press enter to bring up the Security Code menu.

Enter the required Access Code.
If the code is incorrect the user will be prompted to try again.
If the code is correct the padlock at the top of the screen will turn to a key and the unit will be unlocked

Enter Code
Electrodeless Conductivity Input Setup

The Channels Setup menu contains the basic configurations for the sensor’s input. The default security access code is 1000

Main Menu

From the front screen press the menu button to show the main menu options.

- \(\uparrow / \downarrow \) – Select Option
- EXIT – Return to Front Screen
- \(\rightarrow \) – Enter Option

Channel Menu

From the main menu highlight “channel” and press the enter option button to show the channel menu options.

- \(\uparrow / \downarrow \) – Select Option
- EXIT – Return to Main Menu
- \(\rightarrow \) – Enter Option

Units

The instrument can be setup to display conductivity in Siemens/cm, TDS (Total Dissolved Solids) in ppm, or Solution.

When solution is selected the user can enter an up to 9-point conductivity to custom reading curve.

- \(\uparrow / \downarrow \) – Select Option
- EXIT – Cancel
- \(\rightarrow \) – Save Selection
Sensor Type

The electrodeless conductivity input can use either the ECS20 or ECS40 series sensors. Selecting the appropriate sensor will configure the instrument with the correct nominal cell constant.

! A Sensor loop calibration must be performed when a new sensor is attached to the instrument or the sensor cable is changed; see page 37 for details.

Select Option
Cancel
Save Selection

Range

Select the desired operating range for the input or select auto to let the instrument select the appropriate operating range.

Not available when Units are set to Solution.

Select Option
Cancel
Save Selection

Setup Solution

The instrument provides the user with the facility to enter a customised conversion from conductivity to a user defined concentration of solution.

The setup solution menu provides the following options.

- Number of points – Define the number of data entry points which make up the custom curve.
- Input Range – The conductivity range over which the custom curve will operate.
- Solution Units – Enter the units the conversion will use (5 Characters maximum).
- Solution Range – Enter the range over which the converted reading will operate.
- Data Points – Enter the conductivity and equivalent concentration value.

Note: Common solution curves and their associated TC compensation slope can be found listed in Appendix A - Solution Conversion.
TDS Factor

When TDS is selected as the operating units the instrument will display the conductivity as “ppm” using a factor which can be adjusted between 0.50 and 0.90.

- Increase / Decrease Digit
- Select Next Digit
- Cancel
- Save Value

Temperature Units

Sets the temperature units used.

- Select Option
- Cancel
- Save Selection

Temperature Compensation mode

Temperature compensation is enabled by setting this to either “PT1000” or “Manual”.

- Select Option
- Cancel
- Save Selection

Manual Temp Input

The fixed temperature value used for manual temperature compensation.

Only available when temperature compensation mode is set to “manual”.

- Increase / Decrease Digit
- Select Next Digit
- Cancel
- Save Value
Temperature Compensation Base

Sets the temperature compensation base. See Appendix B - Temperature Coefficient for more information. Only available if Temperature Compensation is set to PT1000 or Manual.

- Select Option
- Cancel
- Save Selection

Temperature Compensation Slope

Sets the temperature compensation slope. See Appendix B - Temperature Coefficient for more information. Only available if Temperature Compensation is set to PT1000 or Manual.

- Increase / Decrease Digit
- Select Next Digit
- Cancel
- Save Value

Show Raw Sensor

When enabled will show the conductivity reading in a secondary location on the front screen in addition to the primary reading. Only available when Units set to Solution.

- Select Option
- Cancel
- Save Selection

Input Filtering (Averaging)

When very noisy environments are encountered, this function will allow the user to filter the sensor readings by taking a running average over the time period selected (from 10 seconds to 5 minutes).

- Select Option
- Cancel
- Save Selection
Simulated Range
If using auto range select the range over which the simulate sensor mode works.

- Select Option
EXIT – Return to Main Menu
invoices – Enter Option

Simulate Sensor
To help in commissioning of the instrument the user can use this menu to manually set the sensor reading and so test the operation of the setpoints and current output.

- Increase / Decrease Digit
- Select Next Digit
EXIT – Cancel
SET – Use Entered Value

Simulate Temperature
To help in commissioning of the instrument the user can use this menu to manually set the temperature reading and so test the operation of the current output. Only available on advanced instruments.

- Increase / Decrease Digit
- Select Next Digit
EXIT – Cancel
SET – Use Entered Value
Calibration

Normal good practices should be observed when calibrating an electrodeless conductivity system.

Four Calibration procedures are provided with the electrodeless conductivity input:

- An initial installation loop calibration that matches the sensor, cable and instrument using loop resistors. This only needs to be performed when the system is commissioned and when a sensor or cable is changed.
- A solution calibration, that will allow the user to fine tune the calibration. Note: The amount of adjustment is quite small because the factory calibration is accurate and with modern electronics, drift is very low. If it is found that during a calibration there is insufficient adjustment then it is probable that there is a problem with either the calibration procedure, or a fault with the instrument, sensor or cabling.
- Temperature measurement adjustment, will allow to fine tune the temperature input in relation to a known input.

For best results always clean the sensor before making any adjustments.

Calibration of Conductivity Readings

Conductivity measurements are very temperature dependent so it is essential that an understanding of the complex relationship between conductivity and temperature is understood when calibrations are made. It is possible to make several different types of calibration.

Calibration with Standard Solutions

This calibration must be carried out under strictly controlled conditions due to the temperature effect on conductivity measurements and the possibility of contamination of the standard solution. The advantage of this calibration method is that the sensor and cable are an integral part of the calibration. LTH strongly recommends a lower limit of 500μS/cm for this type of calibration. Conductivity is a very sensitive measurement and even trace contamination of the standard solution will be detected, for example exposing the solution to air will add 1μS/cm to the standard solution due to absorption of CO₂.

Most standards are made up from a solution of KCl dissolved in high purity water. BS EN 60746-3 provides details of the concentrations of KCl necessary to produce industry standard conductivity solutions. Ready-made solutions are available from LTH with traceable certification if required.

Standard solutions will be supplied with a conductivity value quoted at a reference temperature. This temperature is the base temperature and the calibration should be performed at that temperature, with the temperature compensation switched out. Alternatively, the temperature compensation should be switched on and a temperature slope and base temperature equal to that of the calibration solution can be used to configure the instrument. For example, this would be 1.76%/°C for a KCl solution between 1000 to 10,000μS/cm. For more details on calculating the slope of a different solution, refer to Appendix B - Temperature Coefficient (page 60)

Calibration by Comparison with Another Instrument

This can provide the easiest method for in-situ calibrations but has the disadvantage of only being able to check a single measurement point. As measurements are made by comparison of the readings taken in the same solution, temperature effects are less critical. However, it is essential that settings for temperature compensation are the same on both instruments.
Calibration Menu

The calibration menu provides the facility to adjust the sensor inputs to the system in which it is operating.

The default security access code is 1000

Main Menu

From the front screen press the menu button to show the main menu options.

- / - Select Option
EXIT - Return to Front Screen
- - Enter Option

Calibration Menu

From the main menu highlight "calibration" and press the enter option button to show the channel menu options.

- / - Select Option
EXIT - Return to Main Menu
- - Enter Option

Mode

Selecting off-line causes any setpoints to de-energise and current outputs to go to their off-line state. Useful for when commissioning or calibrating the instrument.

When the instrument is placed in an off-line state "off-line" will appear on the front screen.

- / - Select Option
EXIT - Cancel
- - Save Selection
Calibration Manual Temperature Input

This setting allows a different fixed temperature value to be used when calibrating. Makes it easier to calibrate a standard solution at a different temperature to the process. Only available when the temperature compensation mode has been set to manual in the channel setup menu.

- Increase / Decrease Digit
- Select Next Digit
- Cancel
- Save Value

Calibrate Sensor

Sensor loop calibration. Must be carried out when a sensor or sensor cable is changed. See page 37 for more details.

- Select Option
- Return to Select Calibration Channel
- Enter Sensor Calibration

Sensor Solution Calibration

The sensor solution calibration enables the user to adjust the sensor reading to match a known input.

The current sensor reading can be seen in the pop-up window and is adjusted by pressing the up and down arrows. When the reading is correct press the enter button to store the calibration. The calculated slope or offset, depending on the instruments units, are shown in the next menu entry.

- Adjust the Reading Up or Down
- Cancel
- Save Calibration
Sensor Slope or Offset Value

Depending on the instrument’s units, the sensor slope or offset value currently being used. The value will change depending on the result of the sensor solution calibration.

Cannot be edited

A slope value of 100% indicates that no adjustment has been made to the sensor calibration.

A slope value of greater than 100% indicates that the sensor reading has had to be increased to match the known input.

A slope value of less than 100% indicates that the sensor reading has had to be decreased to match the known input.

Temperature Offset Calibration

The temperature offset calibration enables the user to adjust the temperature reading to match a known input.

The current temperature reading can be seen in the pop-up window and is adjusted by pressing the up and down arrows. When the reading is correct press the enter button to store the calibration. The calculated offset is shown in the next menu entry.

- / \ – Adjust the Reading Up or Down
EXIT – Cancel
\ – Save Calibration

Temp Offset Value

The temperature offset value currently being used. The value will change depending on the result of the temperature offset calibration.

Cannot be edited
Front Screen Calibration Access Enable

When enabled, front calibration access allows direct entry into the calibration menu from the front screen by pressing the "CAL" button.

It also disables the security access system within the calibration menu enabling the calibration functions without having to enter the security access code.

- ✔️ - Select Option
- EXIT - Cancel
- ← - Save Selection

Reset Sensor

Reset any sensor loop calibration that may have been performed.

- ✔️ - Select Option
- EXIT - Return to Main Menu
- ← - Enter Option

Reset Solution

Reset any solution calibration that may have been performed.

- ✔️ - Select Option
- EXIT - Return to Main Menu
- ← - Enter Option

Reset Temperature

Reset any user temperature calibration that may have been performed.

- ✔️ - Select Option
- EXIT - Return to Main Menu
- ← - Enter Option
Sensor Loop Calibration

The sensor calibration is a one-off configuration calibration, to allow for losses due to cable length and sensor output variations. It must be completed when either a sensor or sensor cable is changed. To complete the calibration the four loop resistors (Black, Glue, Green, Pink) supplied with the instrument must be used, once completed do not discard the resistors as they will be required for future calibration and checks. The resistors must be removed prior to installing the sensor into a pipe or tank.

Calibrate Sensor

To start the sensor loop calibration, select the “Calibrate Sensor” item from the calibration menu.

- Select Option
- Return to Select Calibration Channel
- Enter Sensor Calibration

Insert Black Loop

Attach the Black (5000Ω) loop resistor to the sensor as shown, then press the enter button. The screen will then indicate that the instrument is sampling the sensor.

If the calibration has been completed successfully then the instrument will automatically prompt for the next loop resistor.

If the fail message appears then there has been a calibration problem check the loop resistor, the sensor and the cable. If all appears correct press the “prev” button then the enter button to restart the calibration.

- Exit Calibration Without Saving
- Skip to Next Calibration Point
- Exit Calibration Without Saving
- Initiate Calibration
Insert Blue Loop
Remove the previous loop resistor and attach the Blue (500Ω) loop resistor to the sensor as shown previously, then press the enter button.

<table>
<thead>
<tr>
<th>Button</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREV</td>
<td>Go to Previous Calibration Point</td>
</tr>
<tr>
<td>SKIP</td>
<td>Skip to Next Calibration Point</td>
</tr>
<tr>
<td>EXIT</td>
<td>Exit Calibration Without Saving</td>
</tr>
<tr>
<td></td>
<td>Initiate Calibration</td>
</tr>
</tbody>
</table>

Insert Green Loop
Remove the previous loop resistor and attach the Green (50Ω) loop resistor to the sensor as shown previously, then press the enter button.

<table>
<thead>
<tr>
<th>Button</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREV</td>
<td>Go to Previous Calibration Point</td>
</tr>
<tr>
<td>SKIP</td>
<td>Skip to Next Calibration Point</td>
</tr>
<tr>
<td>EXIT</td>
<td>Exit Calibration Without Saving</td>
</tr>
<tr>
<td></td>
<td>Initiate Calibration</td>
</tr>
</tbody>
</table>

Insert Pink Loop
Remove the previous loop resistor and attach the Pink (5Ω) loop resistor to the sensor as shown previously, then press the enter button.

<table>
<thead>
<tr>
<th>Button</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREV</td>
<td>Go to Previous Calibration Point</td>
</tr>
<tr>
<td>SKIP</td>
<td>Skip to Next Calibration Point</td>
</tr>
<tr>
<td>EXIT</td>
<td>Exit Calibration Without Saving</td>
</tr>
<tr>
<td></td>
<td>Initiate Calibration</td>
</tr>
</tbody>
</table>

Zero Calibration
Remove the previous loop resistor, and ensure that the sensor head is located in free air, then press the enter button. Note this calibration can take a few minutes.

When the calibration has completed successfully press the enter button to save the calibration and return to the channel's main calibration menu.

<table>
<thead>
<tr>
<th>Button</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREV</td>
<td>Go to Previous Calibration Point</td>
</tr>
<tr>
<td>SKIP</td>
<td>Exit Calibration Without Saving</td>
</tr>
<tr>
<td>EXIT</td>
<td>Exit Calibration Without Saving</td>
</tr>
<tr>
<td></td>
<td>Initiate Calibration</td>
</tr>
</tbody>
</table>
Setpoints

The BED17 is be fitted with two “Normally Open” setpoint relays designated Setpoint 1 and Setpoint 2. The Setpoint menu contains all the necessary setup functions to configure the setpoint. The instrument indicates the status of the relay by means of a symbol on the front screen.

Indicates that the relay contact is open

Indicates that the relay contact is closed (if flashing indicates that a dose alarm has occurred).

Main Menu

From the front screen press the menu button to show the main menu options and select the setpoint you wish to configure.

- Select Option
- Return to Front Screen
- Enter Option

Setpoint Menu

Select the Setpoint function you wish to configure.

- Select Option
- Return to Main Menu
- Enter Option

Trigger

The setpoints can be configured to trigger in the following ways:

- Low
- High
- Band
- SP1 Proportional (Available on Setpoint 2 Only)
- SP1 Accumulation (Available on Setpoint 2 Only)

- Select Option
- Cancel
- Save Selection
Setpoints

Low

The setpoint will activate when the sensor reading becomes less than the setpoint level.

High

The setpoint will activate when the sensor reading becomes greater than the setpoint level.

Band

The setpoint will activate when the sensor reading is either greater than the setpoint high level or less than the setpoint low level.

SP1 Proportional

The setpoint will dose in proportion to the time that setpoint 1 was on.

E.g. If setpoint is energised for 10 minutes and the proportion is set to 50% then setpoint 2 will start dosing for 5 minutes immediately after setpoint 1 has de-energised.

- Increase / Decrease Digit
- Select Next Digit
- Cancel
- Save Value
SP1 Accumulation
The setpoint will dose for the dose time after the accumulation on time of setpoint 1 has been reached.

<table>
<thead>
<tr>
<th>Action</th>
<th>Set the setpoint to work in the normal mode or reverse mode - which is akin to a normally closed relay except it will fall open if the power to the instrument is removed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE</td>
<td>The setpoints operating range. This is only available if sensor range in the channel menu has been set to Auto. Else the setpoint operates over the selected range of the channel.</td>
</tr>
<tr>
<td>LOW VALUE</td>
<td>The Setpoint Low value.</td>
</tr>
</tbody>
</table>

SP1 Accumulation

<table>
<thead>
<tr>
<th>Setpoint Name</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accumulation Time</td>
<td>00:10hh:mm</td>
<td>The setpoint will dose for the dose time after the accumulation on time of setpoint 1 has been reached.</td>
</tr>
<tr>
<td>Dose Time</td>
<td>00:10mm:ss</td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>NORMAL or REVERSE</td>
<td>Set the setpoint to work in the normal mode or reverse mode.</td>
</tr>
<tr>
<td>Range</td>
<td>999.9μS/cm, 9.999mS/cm, 99.9mS/cm</td>
<td>The setpoints operating range. This is only available if sensor range in the channel menu has been set to Auto. Else the setpoint operates over the selected range of the channel.</td>
</tr>
<tr>
<td>Low Value</td>
<td>10.00mS/cm</td>
<td>The Setpoint Low value.</td>
</tr>
</tbody>
</table>
High Value
The Setpoint High value.

- Increase / Decrease Digit
- Select Next Digit
- Cancel
- Save Value

Delay
In order to prevent short duration changes at the input affecting the setpoint operation a delay can be set before the setpoint is energised. If the input is still the same after the delay, then the setpoint will be energised.

- Increase / Decrease Digit
- Select Next Digit
- Cancel
- Save Value

SP1 Inhibit
Prevents setpoint 1 for energising for the duration of the inhibit time once the setpoint 2 has de-energised.

Only available on setpoint 2 and when the trigger is set to either SP1 Proportional or SP1 Accumulation.

- Increase / Decrease Digit
- Select Next Digit
- Cancel
- Save Value
Hysteresis

A facility to apply hysteresis to the setpoint level allows the user to avoid setpoint “Chatter” when the reading level approaches the setpoint level.

“Chatter” is caused when the reading is sufficiently close to the set point value and noise on the signal repeatedly crosses the set point level, thus causing the relay to switch on and off rapidly.

The hysteresis level should therefore be set to be greater than the input noise level.

The Hysteresis value is a percentage of the setpoint value applied both + and – to the setpoint. For example, if the setpoint was 10.00 and the Hysteresis was 1% then the hysteresis band would operate from 9.90 to 10.10.

Hysteresis operates as follows:

Trigger High – The setpoint is inactive until the reading is greater than the Setpoint High + (Setpoint High X Hysteresis %). It remains active until it goes below Setpoint High – (Setpoint High X Hysteresis %).

Trigger Low – The setpoint is inactive until the reading is less than the Setpoint Low – (Setpoint Low X Hysteresis %). It remains active until it goes above Setpoint Low + (Setpoint Low X Hysteresis %).

Trigger Band – The setpoint uses both high and low.

Note. Hysteresis is only available when setpoint trigger is set to High, Low or Band.

- Increase / Decrease Digit
- Select Next Digit
- Cancel
- Save Value
Setpoints

Setpoint Dose Alarm

The dose alarm timer can be used to prevent overdosing under many different fault conditions, such as sensor failure or application problems.

<table>
<thead>
<tr>
<th>Dose Alarm</th>
<th>Enable the dose alarm for the selected setpoint.</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑/↓ EXIT</td>
<td>– Select Option</td>
</tr>
<tr>
<td>← EXIT</td>
<td>– Save Selection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alarm Time</th>
<th>Sets the time which if the setpoint is active for longer than causes the dose alarm to activate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑/↓ EXIT</td>
<td>– Increase / Decrease Digit</td>
</tr>
<tr>
<td>↑ EXIT</td>
<td>– Select Next Digit</td>
</tr>
<tr>
<td>← EXIT</td>
<td>– Save Value</td>
</tr>
</tbody>
</table>

Dose Alarm Active

When the dose alarm activates the following happens:-
- The setpoint will de-energise.
- The associated front screen setpoint symbol will flash.
- The Dose Alarm error message will appear at the top of the front screen.
- ACK will appear as a function to acknowledge the setpoint on the front screen – press to clear the alarm.

Note – If, once cleared, the setpoint again remains energised for the length of the dose alarm timer then the dose alarm will once again activate. If this problem persists then a dosing problem will need to be investigated.

ACK 1 – Clear Setpoint 1 Dose Alarm
ACK 2 – Clear Setpoint 2 Dose Alarm
Menu – Access Main Menu
Initial Charge

This allows the user to have a onetime over-ride of the Dose Alarm to use for example when filling a tank for the first time. The user enters a charge time and then initiates the charge time. The instrument will then disable the dose alarm until either the relay becomes inactive because the setpoint has been reached or the charge timer reaches zero in which event the instrument will automatically display enter a Dose Alarm state.

- / + – Select Option
EXIT – Cancel
← – Save Selection

Charge Time

Sets the initial charge time.

- / + – Increase / Decrease Digit
↑ – Select Next Digit
EXIT – Cancel
← – Save Value

Charge Access

Enabling this allows the user to initialise the initial charge by means of a button on the front screen.

- / + – Select Option
EXIT – Cancel
← – Save Selection

Start Initial Charge

The user can also start the initial charge via this option in the setpoint menu.

- / + – Select Option
EXIT – Cancel
← – Save Selection
0/4-20mA Output

The BED17 is fitted with two current outputs. Output A enables the transmission of the primary variable, whilst output B transmits the process temperature. The current output menu contains all of the necessary setup functions to configure the current output sources. The instrument will display the status of the current output on the front screen, where --.--mA indicates that the output is disabled.

Main Menu

From the front screen press the menu button to show the main menu options and select the desired 0/4-20mA Output.

- ↑/↓ – Select Option
- EXIT – Return to Front Screen
- ← – Enter Option

0/4-20mA Output Menu

Select the 0/4-20mA function you wish to configure.

- ↑/↓ – Select Option
- EXIT – Return to Main Menu
- ← – Enter Option

Output Mode

Enable the current output by selecting its output mode, either 0 – 20mA or 4 – 20mA.

- ↑/↓ – Select Option
- EXIT – Cancel
- ← – Save Selection

Range

The current output’s operating range.

This is only available if sensor range in the channel menu has been set to Auto. Else the output operates over the selected range of the channel.

- ↑/↓ – Select Option
- EXIT – Cancel
- ← – Save Selection
Zero (0mA) / Zero (4mA)

Enter the desired sensor value to be represented by 0mA or 4mA (depends on current output mode). An inverse relationship can be achieved by setting the Zero greater than the Span.

If the sensor reading falls outside this or the span value an error will be activated.

- Increase / Decrease Digit
- Select Next Digit
- Cancel
- Save Value

Span (20mA)

Enter the desired sensor value to be represented by 20mA. An inverse relationship can be achieved by setting the Span less than the Zero.

If the sensor reading falls outside this or the zero value an error will be activated.

- Increase / Decrease Digit
- Select Next Digit
- Cancel
- Save Value

On Error

The current outputs can be programmed to output 0mA, 4mA, 22mA or Hold their value when an error is detected on the input source (i.e. Sensor Fault, Temperature Fault), to provide remote warning of error conditions or to ensure fail safe operation.

- Select Option
- Cancel
- Save Selection
Offline Mode
The current outputs can be programmed to output 0mA, 4mA, 22mA or Hold their value when the instrument is put in an offline state.

- Select Option
- Cancel
- Save Selection

Calibration
Enter Menu to calibrate the 0/4-20mA

- Select Option
- Return to Main Menu
- Enter Option

Adjust 0mA Output
Using the and buttons adjust the current output until it reads the desired value on your current meter. Please keep in mind that the current output cannot go below 0mA.

Only used when the mode is set to 0-20mA

- Adjust Output
- Cancel
- Save Adjustment

Adjust 4mA Output
Using the and buttons adjust the current output until it reads the desired value on your current meter.

Only used when the mode is set to 4-20mA

- Adjust Output
- Cancel
- Save Adjustment
Adjust 20mA Output

Using the ▲ and ◄ buttons adjust the current output until it reads the desired value on your current meter.

▲ ◄ – Adjust Output
EXIT – Cancel
◄ – Save Adjustment

Reset Calibration

Used to reset any user calibration applied to the 0/4-20mA Output

▲ ◄ – Select Option
EXIT – Return to Calibration
◄ – Enter Option
Digital Inputs

The BED17 is fitted with a single digital input. The digital input menu contains all of the necessary setup functions to configure the digital input sources. This input is intended to be switched using a volt free link, switch or relay. The user can select whether closing or opening the contact initiates the configured action.

Main Menu

From the front screen press the menu button to show the main menu options and select the digital input A or B you wish to configure.

- [$/$] – Select Option
- [EXIT] – Return to Front Screen
- [$] – Enter Option

Digital Input Menu

Select the digital input function you wish to configure.

- [$/$] – Select Option
- [EXIT] – Return to Main Menu
- [$] – Enter Option

Current Status

Shows the current status of the digital input.

(Non-selectable)
Function

The digital input can be configured to operate in the following ways:

- Offline
- Interlock
- Flow Switch Input
- Tank Level Switch

These four functions when active will take the instrument "offline". This causes any active setpoints to de-energise, the 0/4-20mA output to change to its set offline state and the selected function message to appear on the front screen.

Select Option
Cancel
Save Selection

Polarity

Configure whether the digital input activates on the closing of circuit (normal) or the opening of the circuit (reverse).

Select Option
Cancel
Save Selection
Configuration

The configuration menu enables the user to configure the basic operating parameters of the instrument.

Main Menu

From the front screen press the menu button to show the main menu options and select Configuration.

- Select Option
- Return to Front Screen
- Enter Option

Configuration Menu

Select the function you wish to configure.

- Select Option
- Return to Main Menu
- Enter Option

Language

The BXD17 Series has the ability to support multilingual menus. The language of choice can be selected from this menu.

- Select Option
- Cancel
- Save Selection

Set Time/Date

Sets the instruments time and date.

- Increase / Decrease Digit / Item
- Select Next Digit / Item
- Cancel
- Save Time
Set Access Code

Sets the access code used by the instrument to prohibit changes to configuration by unauthorised personnel.

- Increase / Decrease Digit / Item
- Select Next Digit / Item
- Cancel
- Save Time

Unit Flash On Error

Enables the flashing of the display backlight in the event of an instrument error.

- Select Option
- Return to Main Menu
- Enter Option

Set Display Contrast

This allows the user to adjust the contrast of the display to compensate for environmental conditions that may affect the readability of the display.

- Adjust Contrast
- Return to Configuration Menu
- Enter Option

Software Version

Displays the instrument’s current software version number.

- Select Option
- Return to Main Menu
- Enter Option
Serial Number
Displays the instrument’s serial number.

- Select Option
- Return to Main Menu
- Enter Option

Contact Information
Display the contact information.

- Select Option
- Return to Main Menu
- Enter Option
Update Software

The BED17 operating software can be upgraded by saving the latest version from LTH onto a micro SD card, inserting it into the instrument and following the instructions below. All three files must be present on the SD card for the update to work. The instrument supports SDHC and SDXC cards; however they must be formatted to fat32 which can be accomplished using a personal computer.

Update Software

Select the update software option from within the configuration menu.

- Select Option
- Return to Main Menu
- Enter Option

If the instrument has verified that all of the required software is present on the micro SD card press enter to begin the update.

During the update the display will indicate the progress of the update.

Once finished the instrument will restart automatically.

- Return to Update Software Menu
- Begin Update
Save, Restore & Reset

The BED17 features the ability to save and restore the current configuration of the channel, setpoints, current outputs, and digital inputs.

The save and restore menu also features the ability to reset the whole instrument back to its factory settings.

![Main Menu Diagram]

Main Menu

From the front screen press the menu button to show the main menu options and select Save/Restore.

- Select Option
- Return to Front Screen
- Enter Option

![Save / Restore Menu Diagram]

Save / Restore Menu

Select the operation you wish to carry out.

- Select Option
- Return to Main Menu
- Enter Option

![Setup Diagram]

Setup

Displays if present the time and date of the current saved setup.
Save, Restore & Reset

Save Setup
Save the current instrument setup.

Restore Setup
Restore the previously saved setup.

Delete Setup
Delete the previously saved setup.

Default Instrument
Reset the whole instrument back to its factory settings.
Service

The BED17 features a service reminder system that will inform the user when the instrument is due its service.

Service Alarm

Service alarm configuration:

- Service Reminder – Turn the service alarm on or off. Requires service security code prior to use.
- Service Interval – Set the Service Interval. Requires service security code prior to use.
- Next Service Date – Sets the exact service date. Requires service security code prior to use.
- Defer Service Date – Only appears once the service interval has expired. Increases the service interval by an extra 7 days. Requires standard security code prior to use.

- Select Option
- Return to Main Menu
- Edit Option
Appendix A - Solution Conversion

The following table provides some of the data points which have been used in the instrument to make the conversion between conductivity and solution concentration.

<table>
<thead>
<tr>
<th>% wt / vol</th>
<th>NaOH</th>
<th>NaCl</th>
<th>HCl</th>
<th>H₂SO₄</th>
<th>H₃PO₄</th>
<th>HNO₃</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>53.2</td>
<td>12.6</td>
<td>103.0</td>
<td>48.5</td>
<td>11.25</td>
<td>60.0</td>
<td>20.0</td>
</tr>
<tr>
<td>5</td>
<td>223.0</td>
<td>78.3</td>
<td>432.0</td>
<td>237.0</td>
<td>32.9</td>
<td>275.0</td>
<td>90.0</td>
</tr>
<tr>
<td>10</td>
<td>358.0</td>
<td>140.0</td>
<td>709.0</td>
<td>427.0</td>
<td>61.1</td>
<td>498.0</td>
<td>170.0</td>
</tr>
<tr>
<td>20</td>
<td>414.0</td>
<td>226.0</td>
<td>-----</td>
<td>709.0</td>
<td>117.0</td>
<td>763.0</td>
<td>320.0</td>
</tr>
</tbody>
</table>

Note: Salinity range is displayed by the instrument in parts per thousand concentration (p.p.t.), which is the concentration in % shown above, multiplied by 100.

<table>
<thead>
<tr>
<th>% / °C</th>
<th>NaOH</th>
<th>NaCl</th>
<th>HCl</th>
<th>H₂SO₄</th>
<th>H₃PO₄</th>
<th>HNO₃</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>------</td>
<td>1.79</td>
<td>1.90</td>
<td>1.27</td>
<td>1.03</td>
<td>0.86</td>
<td>1.19</td>
<td>1.92</td>
</tr>
</tbody>
</table>
Appendix B - Temperature Coefficient

Calculating the temperature coefficient of a solution

If the temperature coefficient of the solution being monitored is not known, the instrument can be used to determine that coefficient. You should set the channel to a suitable range and the temperature coefficient to 0.0% or temperature compensation to “Out”.

The following measurements should be made as near to the normal operating point as practical, between 5°C and 70°C for the highest accuracy. Immerse the measuring cell in at least 500 ml of the solution to be evaluated, allow sufficient time to stabilise, approximately one or two minutes, and then record both the temperature and conductivity readings. Raise the solution temperature by at least 10°C and again record the temperature and conductivity readings. Using the following equation, the temperature compensation slope can be calculated in percentage terms:

$$\alpha = \frac{(G_x - G_y) \times 100\%}{G_y(T_x - 25) - G_x(T_y - 25)}$$ (base temperature 25°C)

Note: If the base temperature is set to 20°C, then replace 25 with 20 in the above equation.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gx</td>
<td>Conductivity in μS/cm at temperature Tx</td>
</tr>
<tr>
<td>Gy</td>
<td>Conductivity in μS/cm at temperature Ty</td>
</tr>
</tbody>
</table>

Note: One of these measurements can be made at ambient temperature.

Set the temperature compensation slope to the calculated value. The temperature compensation is now set up for normal operation.

If it is difficult or impossible to evaluate the temperature compensation slope using this method, a 2.0 % / °C setting will generally give a good first approximation until the true value can be determined by independent means.

Temperature Data

The table below lists approximate resistance values of temperature sensors that may be used with the bed17.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>PT1000 RTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000.0Ω</td>
</tr>
<tr>
<td>10</td>
<td>1039.0Ω</td>
</tr>
<tr>
<td>20</td>
<td>1077.9Ω</td>
</tr>
<tr>
<td>25</td>
<td>1097.3Ω</td>
</tr>
<tr>
<td>30</td>
<td>1116.7Ω</td>
</tr>
<tr>
<td>40</td>
<td>1155.4Ω</td>
</tr>
<tr>
<td>50</td>
<td>1194.0Ω</td>
</tr>
<tr>
<td>60</td>
<td>1232.4Ω</td>
</tr>
<tr>
<td>70</td>
<td>1270.7Ω</td>
</tr>
<tr>
<td>80</td>
<td>1308.9Ω</td>
</tr>
<tr>
<td>90</td>
<td>1347.0Ω</td>
</tr>
<tr>
<td>100</td>
<td>1385.0Ω</td>
</tr>
</tbody>
</table>
Appendix C - Error Messages

Switch On Diagnostic Errors

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01</td>
<td>Read/Write Error</td>
<td>Try switching the unit off and then on again. If the message persists, consult with your supplier, as this unit may require to be returned for repair.</td>
</tr>
<tr>
<td>E02</td>
<td>Data Error</td>
<td>The instrument configuration has for some reason become corrupted. Try switching the unit off and then on again. If the message persists use the Default Instrument function in the Save/Restore menu or consult with your supplier, as this unit may require a repair.</td>
</tr>
<tr>
<td>E03</td>
<td>Storage Error</td>
<td>The save setup configuration has for some reason become corrupted. Try switching the unit off and then on again. If the message persists use the delete setup function in the Save/Restore menu or consult with your supplier, as this unit may require a repair.</td>
</tr>
<tr>
<td>E04</td>
<td>Factory Error</td>
<td>The factory configuration has for some reason become corrupted. Try switching the unit off and then on again. If the message persists, consult with your supplier, as this unit may require to be returned for repair.</td>
</tr>
<tr>
<td>E05</td>
<td>User Cal Error</td>
<td>The instrument user calibration has for some reason become corrupted. Try switching the unit off and then on again. If the message persists use the Default Instrument function in the Save/Restore menu or consult with your supplier, as this unit may require a repair.</td>
</tr>
</tbody>
</table>

Sensor Input Errors

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>E23</td>
<td>Sensor Over Range</td>
<td>The sensor reading is greater than the specified upper limit, check channel settings, Sensor condition and connections. If the message persists please consult with your supplier.</td>
</tr>
<tr>
<td>E24</td>
<td>Sensor Under Range</td>
<td>The sensor reading is less than the specified lower limit, check channel settings, Sensor condition and connections. If the message persists please consult with your supplier.</td>
</tr>
<tr>
<td>E31</td>
<td>Temperature Over Range</td>
<td>The temperature reading is greater than the specified upper limit, check channel settings, Sensor condition and connections. If the message persists please consult with your supplier.</td>
</tr>
<tr>
<td>E32</td>
<td>Temperature Under Range</td>
<td>The temperature reading is less than the specified lower limit, check channel settings, Sensor condition and connections. If the message persists please consult with your supplier.</td>
</tr>
</tbody>
</table>
Faults

Setpoint Status

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>M51</td>
<td>Setpoint 1 Dose Alarm</td>
<td>The Dose alarm for setpoint 1 is active.</td>
</tr>
<tr>
<td>M52</td>
<td>Setpoint 2 Dose Alarm</td>
<td>The Dose alarm for setpoint 2 is active.</td>
</tr>
</tbody>
</table>

Current Output Errors

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>E61</td>
<td>Output A Hardware</td>
<td>The current output circuit has detected an error in the current output loop; this is most commonly due to either a broken loop or too large a load resistor.</td>
</tr>
<tr>
<td>E71</td>
<td>Output B Hardware</td>
<td>The current output circuit has detected an error in the current output loop; this is most commonly due to either a broken loop or too large a load resistor.</td>
</tr>
<tr>
<td>E62</td>
<td>Sensor < OP A Zero</td>
<td>The sensor input level is below that set for the current output zero.</td>
</tr>
<tr>
<td>E72</td>
<td>Sensor < OP B Zero</td>
<td>The sensor input level is below that set for the current output zero.</td>
</tr>
<tr>
<td>E63</td>
<td>Sensor > OP A Span</td>
<td>The sensor input level is greater than that set for the current output span.</td>
</tr>
<tr>
<td>E73</td>
<td>Sensor > OP B Span</td>
<td>The sensor input level is greater than that set for the current output span.</td>
</tr>
<tr>
<td>E64</td>
<td>Sensor > OP A Zero</td>
<td>The sensor input level is greater than that set for the current output zero.</td>
</tr>
<tr>
<td>E74</td>
<td>Sensor > OP B Zero</td>
<td>The sensor input level is greater than that set for the current output zero.</td>
</tr>
<tr>
<td>E65</td>
<td>Sensor < OP A Span</td>
<td>The sensor input level is below that set for the current output span.</td>
</tr>
<tr>
<td>E66</td>
<td>Sensor < OP B Span</td>
<td>The sensor input level is below that set for the current output span.</td>
</tr>
</tbody>
</table>

Service Messages

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>M80</td>
<td>Service Due</td>
<td>The Planned Service interval for this unit has expired. Please contact LTH Electronics at the details below:</td>
</tr>
</tbody>
</table>

 LTH Electronics Ltd
 Chaul End Lane
 Luton
 Beds
 LU4 8EZ
 Tel. 0044 (0) 1582 593693
 Fax 0044 (0) 1582 598036
 Email sales@lth.co.uk

 NB. LTH overseas users should contact their LTH distributor – See www.lth.co.uk for details.
Fault Finding

NOTE: THERE ARE NO USER SERVICEABLE PARTS INSIDE THE UNIT

The BED17 has been designed to include a wide range of self-diagnostic test, some of which are performed at switch on, and some on a continuous basis. This guide aims to provide a route to diagnosing and correcting any faults that may occur during normal operation. The table shown previously in this section gives a list that the BED17 generates, along with their probable causes. If the fault has not been cleared after these checks have been made contact LTH. Please have as much of the following information available as possible in any communication with LTH, to enable quick diagnosis and correction of the problem.

- Serial number of the instrument.
- The approximate date of purchase.
- Details of the program settings and application.
- Electrical environment and supply details.
- Circumstances under which the fault occurred.
- The nature of the fault or faults.
- Any error messages that are displayed.
- The sensor type, cable length and type.
- Current output configuration.
- Relay connection configuration.
- Digital Input Configuration.

It is often worthwhile to check the measurement by an independent method, for example using a handheld meter.

The Instrument Appears Dead
Check that power is available to the unit. Using a voltmeter, set to AC or DC, check the power supply voltage at the connector. The design of the BED17 allows the unit to accept from 90 to 265V AC, an alternative option allows operation from 12 to 30V DC, check the connection label for voltage specification. Check that the power cable is securely and correctly attached. There are no user serviceable fuses fitted within this unit.

The Access Code Does Not Work
It is probable that the access code has either been changed or the operator does not recall the code correctly. Contact LTH or your local distributor should this problem arise.

The Sensor Reading Is Constantly Over-range or Under-range
- Ensure that the sensor and temperature inputs are correctly connected (see Installation and Choice of Electrodeless Conductivity Sensors, page 10) and that the sensor is not faulty or damaged.
- Check that the correct range, sensor type has been entered within the Channel Setup menu if in doubt set to Auto Range (see page 28).
- Check the temperature compensation state (see Channel Setup page 29) if the compensation is set to “Manual” check that the fixed temperature is at the correct level. If the compensation is “Automatic” check that the temperature reading on the main display is correct.
- Check that the sensor is “seeing” a representative sample, trapped air will give a low reading.
- Ensure the input is correctly connected and the sensor is not faulty or damaged.
- Check the sensor and its cable for possible short circuits. Consider the fact that the conductivity may be higher than the range of the instrument.
- Check the Pt1000 RTD temperature sensor connections.
- Check that any in-line junction boxes and extension cables have been fitted and wired up correctly.
The display reads zero
- Check for open circuit sensor (conductivity or TDS modes)
- Check for damage to the connecting cable.
- Check that all input connections are secure.
- Check the sensor is wired up correctly.
- Check the sensor is immersed in the correct solution.

Instrument display appears to malfunction
- Switch the instrument power off and on again.
- Check that the display back-light is on, indicating power is reaching the unit.
- See that it displays meaningful text (Issue number etc.) in its start-up sequence, indicating processing activity.

The Sensor Reading Is Incorrect
- Low reading due to incomplete immersion.
- There may be some trapped matter within the sensor bore.
- High conductivity readings caused by a short circuit or leakage of liquid contamination into the sensor moulding.
- Low conductivity can be caused by accumulation of trapped air or gas coming out of solution. Check that no "air traps" exist in the sensor installation.
- High conductivity readings caused by leakage of solution into the sensor. This usually indicates that the sensor material has been fractured and the sensor must be replaced.
- First check that the temperature resistance is correct, otherwise the temperature compensation circuit will cause false or erratic readings. Temporarily switching out the temperature compensation can help to show if this is the cause of the problem.
- If another electrodeless sensor is available, this can be used to determine whether the fault lies with the instrument or the sensor.
- Check that the sensor cable is not damaged or broken and that the outer screen does not make contact with any other terminals or metal work.
- Check that the sensor cable is sufficiently distant from power cables or electrical noise sources.
- Check that the correct range has been selected.
- Check that the correct sensor loop resistor calibration values have been used.
- Check that the calibration procedure has been followed precisely.
- Check that the temperature compensation has been set up as required.
- Check that the sensor cable does not exceed the maximum specified length (sensor 5m + extension 95m).
Faults

The Temperature Reading Is Incorrect

- Check that the temperature sensor is correctly attached. (See Temperature Sensor Connections, page 23)
- Check that the temperature sensor type is correctly selected in the Channel Setup menu.
- Where practical check the temperature sensor resistance against the table in Temperature Data, page 60.

Current Output is Incorrect or Noisy

- Check that the maximum load for the current loop has not been exceeded. (750Ω).
- Check that the terminals have been wired correctly.
- Check that the cable screen is attached to Earth at one end and that the cable does not pass too close to a power cable.
- Check that the current output has been configured properly.

Relays Appear to Malfunction

- Check that the unit is “On-Line” (Page 25)
- Check that the set point configuration is correct (see Setpoints, Current Outputs and Digital Input configuration guide)
- If the relays are vibrating or "chattering" as they pass the set point, check the hysteresis setting and increase if necessary.
- Ensure that the relays are connected properly and that the voltage/current levels are not exceeding 5A @ 30V DC or 5A @ 250V AC.
- Check that the instrument input cables are not picking up excessive noise.

Guarantee and Service

Products manufactured by LTH Electronics Ltd are guaranteed against faulty workmanship and materials for a period of three years from the date of despatch, except for finished goods not of LTH manufacture, which are subject to a separate agreement.

All sensors made by LTH Electronics Ltd are thoroughly tested to their published specification before despatch. As LTH have no control over the conditions in which their sensors are used, no further guarantee is given, although any complaints concerning their operation will be carefully investigated.

Goods for attention under guarantee (unless otherwise agreed) must be returned to the factory carriage paid and, if accepted for free repair, will be returned to the customer's address free of charge. Arrangements can also be made for repair on site, in which case a charge may be made for the engineer's time and expenses.

If any services other than those covered by the guarantee are required, please contact LTH direct.

N.B. Overseas users should contact their LTH nominated representative. Special arrangements will be made in individual cases for goods returned from overseas.